def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10( args.cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR100(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader(valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.enabled = True cudnn.benchmark = False cudnn.deterministic = True args.steps = int(np.ceil( 45000 / args.child_batch_size)) * args.child_epochs logging.info("args = %s", args) if args.child_arch_pool is not None: logging.info('Architecture pool is provided, loading') with open(args.child_arch_pool) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs elif os.path.exists(os.path.join(args.output_dir, 'arch_pool')): logging.info('Architecture pool is founded, loading') with open(os.path.join(args.output_dir, 'arch_pool')) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs else: child_arch_pool = None child_eval_epochs = eval(args.child_eval_epochs) build_fn = get_builder(args.dataset) train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn( ratio=0.9, epoch=-1) nao = NAO( args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length, ) nao = nao.cuda() logging.info("Encoder-Predictor-Decoder param size = %fMB", utils.count_parameters_in_MB(nao)) # Train child model if child_arch_pool is None: logging.info( 'Architecture pool is not provided, randomly generating now') child_arch_pool = utils.generate_arch(args.controller_seed_arch, args.child_nodes, 5) # [[[conv],[reduc]]] if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR( args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR( args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet( args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append( utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None eval_points = utils.generate_eval_points(child_eval_epochs, 0, args.child_epochs) step = 0 for epoch in range(1, args.child_epochs + 1): scheduler.step() lr = scheduler.get_lr()[0] logging.info('epoch %d lr %e', epoch, lr) # sample an arch to train train_acc, train_obj, step = child_train(train_queue, model, optimizer, step, child_arch_pool, child_arch_pool_prob, train_criterion) logging.info('train_acc %f', train_acc) if epoch not in eval_points: continue # Evaluate seed archs valid_accuracy_list = child_valid(valid_queue, model, child_arch_pool, eval_criterion) # Output archs and evaluated error rate old_archs = child_arch_pool old_archs_perf = valid_accuracy_list old_archs_sorted_indices = np.argsort(old_archs_perf)[::-1] old_archs = [old_archs[i] for i in old_archs_sorted_indices] old_archs_perf = [old_archs_perf[i] for i in old_archs_sorted_indices] with open(os.path.join(args.output_dir, 'arch_pool.{}'.format(epoch)), 'w') as fa: with open( os.path.join(args.output_dir, 'arch_pool.perf.{}'.format(epoch)), 'w') as fp: with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as fa_latest: with open(os.path.join(args.output_dir, 'arch_pool.perf'), 'w') as fp_latest: for arch, perf in zip(old_archs, old_archs_perf): arch = ' '.join(map(str, arch[0] + arch[1])) fa.write('{}\n'.format(arch)) fa_latest.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf)) fp_latest.write('{}\n'.format(perf)) if epoch == args.child_epochs: break # Train Encoder-Predictor-Decoder logging.info('Training Encoder-Predictor-Decoder') encoder_input = list( map( lambda x: utils.parse_arch_to_seq(x[0], 2) + utils. parse_arch_to_seq(x[1], 2), old_archs)) # [[conv, reduc]] min_val = min(old_archs_perf) max_val = max(old_archs_perf) encoder_target = [(i - min_val) / (max_val - min_val) for i in old_archs_perf] if args.controller_expand is not None: dataset = list(zip(encoder_input, encoder_target)) n = len(dataset) ratio = 0.9 split = int(n * ratio) np.random.shuffle(dataset) encoder_input, encoder_target = list(zip(*dataset)) train_encoder_input = list(encoder_input[:split]) train_encoder_target = list(encoder_target[:split]) valid_encoder_input = list(encoder_input[split:]) valid_encoder_target = list(encoder_target[split:]) for _ in range(args.controller_expand - 1): for src, tgt in zip(encoder_input[:split], encoder_target[:split]): a = np.random.randint(0, args.child_nodes) b = np.random.randint(0, args.child_nodes) src = src[:4 * a] + src[4 * a + 2:4 * a + 4] + \ src[4 * a:4 * a + 2] + src[4 * (a + 1):20 + 4 * b] + \ src[20 + 4 * b + 2:20 + 4 * b + 4] + src[20 + 4 * b:20 + 4 * b + 2] + \ src[20 + 4 * (b + 1):] train_encoder_input.append(src) train_encoder_target.append(tgt) else: train_encoder_input = encoder_input train_encoder_target = encoder_target valid_encoder_input = encoder_input valid_encoder_target = encoder_target logging.info('Train data: {}\tValid data: {}'.format( len(train_encoder_input), len(valid_encoder_input))) nao_train_dataset = utils.NAODataset( train_encoder_input, train_encoder_target, True, swap=True if args.controller_expand is None else False) nao_valid_dataset = utils.NAODataset(valid_encoder_input, valid_encoder_target, False) nao_train_queue = torch.utils.data.DataLoader( nao_train_dataset, batch_size=args.controller_batch_size, shuffle=True, pin_memory=True) nao_valid_queue = torch.utils.data.DataLoader( nao_valid_dataset, batch_size=args.controller_batch_size, shuffle=False, pin_memory=True) nao_optimizer = torch.optim.Adam(nao.parameters(), lr=args.controller_lr, weight_decay=args.controller_l2_reg) for nao_epoch in range(1, args.controller_epochs + 1): nao_loss, nao_mse, nao_ce = nao_train(nao_train_queue, nao, nao_optimizer) logging.info("epoch %04d train loss %.6f mse %.6f ce %.6f", nao_epoch, nao_loss, nao_mse, nao_ce) if nao_epoch % 100 == 0: pa, hs = nao_valid(nao_valid_queue, nao) logging.info("Evaluation on valid data") logging.info( 'epoch %04d pairwise accuracy %.6f hamming distance %.6f', epoch, pa, hs) # Generate new archs new_archs = [] max_step_size = 50 predict_step_size = 0 top100_archs = list( map( lambda x: utils.parse_arch_to_seq(x[0], 2) + utils. parse_arch_to_seq(x[1], 2), old_archs[:100])) nao_infer_dataset = utils.NAODataset(top100_archs, None, False) nao_infer_queue = torch.utils.data.DataLoader( nao_infer_dataset, batch_size=len(nao_infer_dataset), shuffle=False, pin_memory=True) while len(new_archs) < args.controller_new_arch: predict_step_size += 1 logging.info('Generate new architectures with step size %d', predict_step_size) new_arch = nao_infer(nao_infer_queue, nao, predict_step_size, direction='+') for arch in new_arch: if arch not in encoder_input and arch not in new_archs: new_archs.append(arch) if len(new_archs) >= args.controller_new_arch: break logging.info('%d new archs generated now', len(new_archs)) if predict_step_size > max_step_size: break # [[conv, reduc]] new_archs = list( map(lambda x: utils.parse_seq_to_arch(x, 2), new_archs)) # [[[conv],[reduc]]] num_new_archs = len(new_archs) logging.info("Generate %d new archs", num_new_archs) # replace bottom archs if args.controller_replace: new_arch_pool = old_archs[:len(old_archs) - (num_new_archs + args.controller_random_arch)] + \ new_archs + utils.generate_arch(args.controller_random_arch, 5, 5) # discard all archs except top k elif args.controller_discard: new_arch_pool = old_archs[:100] + new_archs + utils.generate_arch( args.controller_random_arch, 5, 5) # use all else: new_arch_pool = old_archs + new_archs + utils.generate_arch( args.controller_random_arch, 5, 5) logging.info("Totally %d architectures now to train", len(new_arch_pool)) child_arch_pool = new_arch_pool with open(os.path.join(args.output_dir, 'arch_pool'), 'w') as f: for arch in new_arch_pool: arch = ' '.join(map(str, arch[0] + arch[1])) f.write('{}\n'.format(arch)) if args.child_sample_policy == 'params': child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR( args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR( args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet( args, 1000, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append( utils.count_parameters_in_MB(tmp_model)) del tmp_model else: child_arch_pool_prob = None
def train_cifar10(): logging.info("Args = %s", args) np.random.seed(args.seed) tf.random.set_seed(args.seed) global_step = tf.Variable(initial_value=0, trainable=False, dtype=tf.int32) epoch = tf.Variable(initial_value=0, trainable=False, dtype=tf.int32) best_acc_top1 = tf.Variable(initial_value=0.0, trainable=False, dtype=tf.float32) ################################################ model setup ####################################################### train_ds, test_ds = utils.load_cifar10(args.batch_size, args.cutout_size) total_steps = int(np.ceil(50000 / args.batch_size)) * args.epochs model = NASNetworkCIFAR(classes=10, reduce_distance=args.cells, num_nodes=args.nodes, channels=args.channels, keep_prob=args.keep_prob, drop_path_keep_prob=args.drop_path_keep_prob, use_aux_head=args.use_aux_head, steps=total_steps, arch=args.arch) temp_ = tf.random.uniform((64, 32, 32, 3), minval=0, maxval=1, dtype=tf.float32) temp_ = model(temp_, step=1, training=True) model.summary() model_size = utils.count_parameters_in_MB(model) print("param size = {} MB".format(model_size)) logging.info("param size = %fMB", model_size) criterion = keras.losses.CategoricalCrossentropy(from_logits=True) learning_rate = keras.experimental.CosineDecay( initial_learning_rate=args.initial_lr, decay_steps=total_steps, alpha=0.0001) # learning_rate = keras.optimizers.schedules.ExponentialDecay( # initial_learning_rate=args.initial_lr, decay_steps=total_steps, decay_rate=0.99, staircase=False, name=None # ) optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate) ########################################## restore checkpoint ###################################################### if args.train_from_scratch: utils.clean_dir(args.model_dir) checkpoint_path = os.path.join(args.model_dir, 'checkpoints') ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer, global_step=global_step, epoch=epoch, best_acc_top1=best_acc_top1) ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=3) # if a checkpoint exists, restore the latest checkpoint. if ckpt_manager.latest_checkpoint: ckpt.restore(ckpt_manager.latest_checkpoint) print('Latest checkpoint restored!!') ############################################# training process ##################################################### acc_train_result = [] loss_train_result = [] acc_test_result = [] loss_test_result = [] while epoch.numpy() < args.epochs: print('epoch {} lr {}'.format(epoch.numpy(), optimizer._decayed_lr(tf.float32))) train_acc, train_loss, step = train(train_ds, model, optimizer, global_step, criterion, classes=10) test_acc, test_loss = valid(test_ds, model, criterion, classes=10) acc_train_result.append(train_acc) loss_train_result.append(train_loss) acc_test_result.append(test_acc) loss_test_result.append(test_loss) logging.info('epoch %d lr %e', epoch.numpy(), optimizer._decayed_lr(tf.float32)) logging.info(acc_train_result) logging.info(loss_train_result) logging.info(acc_test_result) logging.info(loss_test_result) is_best = False if test_acc > best_acc_top1: best_acc_top1 = test_acc is_best = True epoch.assign_add(1) if (epoch.numpy() + 1) % 1 == 0: ckpt_save_path = ckpt_manager.save() print('Saving checkpoint for epoch {} at {}'.format( epoch.numpy() + 1, ckpt_save_path)) if is_best: pass utils.plot_single_list(acc_train_result, x_label='epochs', y_label='acc', file_name='acc_train') utils.plot_single_list(loss_train_result, x_label='epochs', y_label='loss', file_name='loss_train') utils.plot_single_list(acc_test_result, x_label='epochs', y_label='acc', file_name='acc_test') utils.plot_single_list(loss_test_result, x_label='epochs', y_label='loss', file_name='loss_test')
def train_and_evaluate_top_on_cifar100(archs, train_queue, valid_queue): res = [] train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() objs = utils.AvgrageMeter() top1 = utils.AvgrageMeter() top5 = utils.AvgrageMeter() for i, arch in enumerate(archs): objs.reset() top1.reset() top5.reset() logging.info('Train and evaluate the {} arch'.format(i + 1)) model = NASNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, 0.6, 0.8, True, args.steps, arch) model = model.cuda() model.train() optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, 10, args.child_lr_min) global_step = 0 for e in range(10): scheduler.step() for step, (input, target) in enumerate(train_queue): input = input.cuda().requires_grad_() target = target.cuda() optimizer.zero_grad() # sample an arch to train logits, aux_logits = model(input, global_step) global_step += 1 loss = train_criterion(logits, target) if aux_logits is not None: aux_loss = train_criterion(aux_logits, target) loss += 0.4 * aux_loss loss.backward() nn.utils.clip_grad_norm_(model.parameters(), args.child_grad_bound) optimizer.step() prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.data, n) top1.update(prec1.data, n) top5.update(prec5.data, n) if (step + 1) % 100 == 0: logging.info('Train %3d %03d loss %e top1 %f top5 %f', e + 1, step + 1, objs.avg, top1.avg, top5.avg) objs.reset() top1.reset() top5.reset() with torch.no_grad(): model.eval() for step, (input, target) in enumerate(valid_queue): input = input.cuda() target = target.cuda() logits, _ = model(input) loss = eval_criterion(logits, target) prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5)) n = input.size(0) objs.update(loss.data, n) top1.update(prec1.data, n) top5.update(prec5.data, n) if (step + 1) % 100 == 0: logging.info('valid %03d %e %f %f', step + 1, objs.avg, top1.avg, top5.avg) res.append(top1.avg) return res
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.enabled = True cudnn.benchmark = True cudnn.deterministic = True if args.dataset == 'cifar10': args.num_class = 10 elif args.dataset == 'cifar100': args.num_class = 100 else: args.num_class = 10 if args.search_space == 'small': OPERATIONS = OPERATIONS_search_small elif args.search_space == 'middle': OPERATIONS = OPERATIONS_search_middle args.child_num_ops = len(OPERATIONS) args.controller_encoder_vocab_size = 1 + (args.child_nodes + 2 - 1) + args.child_num_ops args.controller_decoder_vocab_size = args.controller_encoder_vocab_size args.steps = int(np.ceil( 45000 / args.child_batch_size)) * args.child_epochs logging.info("args = %s", args) if args.child_arch_pool is not None: logging.info('Architecture pool is provided, loading') with open(args.child_arch_pool) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs elif os.path.exists(os.path.join(args.output_dir, 'arch_pool')): logging.info('Architecture pool is founded, loading') with open(os.path.join(args.output_dir, 'arch_pool')) as f: archs = f.read().splitlines() archs = list(map(utils.build_dag, archs)) child_arch_pool = archs else: child_arch_pool = None build_fn = get_builder(args.dataset) train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn( ratio=0.9, epoch=-1) nao = NAO( args.controller_encoder_layers, args.controller_encoder_vocab_size, args.controller_encoder_hidden_size, args.controller_encoder_dropout, args.controller_encoder_length, args.controller_source_length, args.controller_encoder_emb_size, args.controller_mlp_layers, args.controller_mlp_hidden_size, args.controller_mlp_dropout, args.controller_decoder_layers, args.controller_decoder_vocab_size, args.controller_decoder_hidden_size, args.controller_decoder_dropout, args.controller_decoder_length, ) nao = nao.cuda() logging.info("Encoder-Predictor-Decoder param size = %fMB", utils.count_parameters_in_MB(nao)) if child_arch_pool is None: logging.info( 'Architecture pool is not provided, randomly generating now') child_arch_pool = utils.generate_arch( args.controller_seed_arch, args.child_nodes, args.child_num_ops) # [[[conv],[reduc]]] arch_pool = [] arch_pool_valid_acc = [] for i in range(4): logging.info('Iteration %d', i) child_arch_pool_prob = [] for arch in child_arch_pool: if args.dataset == 'cifar10': tmp_model = NASNetworkCIFAR( args, args.num_class, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) elif args.dataset == 'cifar100': tmp_model = NASNetworkCIFAR( args, args.num_class, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) else: tmp_model = NASNetworkImageNet( args, args.num_class, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps, arch) child_arch_pool_prob.append( utils.count_parameters_in_MB(tmp_model)) del tmp_model step = 0 scheduler = get_scheduler(optimizer, args.dataset) for epoch in range(1, args.child_epochs + 1): scheduler.step() lr = scheduler.get_lr()[0] logging.info('epoch %d lr %e', epoch, lr) # sample an arch to train train_acc, train_obj, step = child_train(train_queue, model, optimizer, step, child_arch_pool, child_arch_pool_prob, train_criterion) logging.info('train_acc %f', train_acc) logging.info("Evaluate seed archs") arch_pool += child_arch_pool arch_pool_valid_acc = child_valid(valid_queue, model, arch_pool, eval_criterion) arch_pool_valid_acc_sorted_indices = np.argsort( arch_pool_valid_acc)[::-1] arch_pool = [arch_pool[i] for i in arch_pool_valid_acc_sorted_indices] arch_pool_valid_acc = [ arch_pool_valid_acc[i] for i in arch_pool_valid_acc_sorted_indices ] with open(os.path.join(args.output_dir, 'arch_pool.{}'.format(i)), 'w') as fa: with open( os.path.join(args.output_dir, 'arch_pool.perf.{}'.format(i)), 'w') as fp: for arch, perf in zip(arch_pool, arch_pool_valid_acc): arch = ' '.join(map(str, arch[0] + arch[1])) fa.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf)) if i == 3: break # Train Encoder-Predictor-Decoder logging.info('Train Encoder-Predictor-Decoder') encoder_input = list( map( lambda x: utils.parse_arch_to_seq(x[0]) + utils. parse_arch_to_seq(x[1]), arch_pool)) # [[conv, reduc]] min_val = min(arch_pool_valid_acc) max_val = max(arch_pool_valid_acc) encoder_target = [(i - min_val) / (max_val - min_val) for i in arch_pool_valid_acc] if args.controller_expand: dataset = list(zip(encoder_input, encoder_target)) n = len(dataset) ratio = 0.9 split = int(n * ratio) np.random.shuffle(dataset) encoder_input, encoder_target = list(zip(*dataset)) train_encoder_input = list(encoder_input[:split]) train_encoder_target = list(encoder_target[:split]) valid_encoder_input = list(encoder_input[split:]) valid_encoder_target = list(encoder_target[split:]) for _ in range(args.controller_expand - 1): for src, tgt in zip(encoder_input[:split], encoder_target[:split]): a = np.random.randint(0, args.child_nodes) b = np.random.randint(0, args.child_nodes) src = src[:4 * a] + src[4 * a + 2:4 * a + 4] + \ src[4 * a:4 * a + 2] + src[4 * (a + 1):20 + 4 * b] + \ src[20 + 4 * b + 2:20 + 4 * b + 4] + src[20 + 4 * b:20 + 4 * b + 2] + \ src[20 + 4 * (b + 1):] train_encoder_input.append(src) train_encoder_target.append(tgt) else: train_encoder_input = encoder_input train_encoder_target = encoder_target valid_encoder_input = encoder_input valid_encoder_target = encoder_target logging.info('Train data: {}\tValid data: {}'.format( len(train_encoder_input), len(valid_encoder_input))) nao_train_dataset = utils.NAODataset( train_encoder_input, train_encoder_target, True, swap=True if args.controller_expand is None else False) nao_valid_dataset = utils.NAODataset(valid_encoder_input, valid_encoder_target, False) nao_train_queue = torch.utils.data.DataLoader( nao_train_dataset, batch_size=args.controller_batch_size, shuffle=True, pin_memory=True) nao_valid_queue = torch.utils.data.DataLoader( nao_valid_dataset, batch_size=args.controller_batch_size, shuffle=False, pin_memory=True) nao_optimizer = torch.optim.Adam(nao.parameters(), lr=args.controller_lr, weight_decay=args.controller_l2_reg) for nao_epoch in range(1, args.controller_epochs + 1): nao_loss, nao_mse, nao_ce = nao_train(nao_train_queue, nao, nao_optimizer) logging.info("epoch %04d train loss %.6f mse %.6f ce %.6f", nao_epoch, nao_loss, nao_mse, nao_ce) if nao_epoch % 100 == 0: pa, hs = nao_valid(nao_valid_queue, nao) logging.info("Evaluation on valid data") logging.info( 'epoch %04d pairwise accuracy %.6f hamming distance %.6f', nao_epoch, pa, hs) # Generate new archs new_archs = [] max_step_size = 50 predict_step_size = 0 top100_archs = list( map( lambda x: utils.parse_arch_to_seq(x[0]) + utils. parse_arch_to_seq(x[1]), arch_pool[:100])) nao_infer_dataset = utils.NAODataset(top100_archs, None, False) nao_infer_queue = torch.utils.data.DataLoader( nao_infer_dataset, batch_size=len(nao_infer_dataset), shuffle=False, pin_memory=True) while len(new_archs) < args.controller_new_arch: predict_step_size += 1 logging.info('Generate new architectures with step size %d', predict_step_size) new_arch = nao_infer(nao_infer_queue, nao, predict_step_size, direction='+') for arch in new_arch: if arch not in encoder_input and arch not in new_archs: new_archs.append(arch) if len(new_archs) >= args.controller_new_arch: break logging.info('%d new archs generated now', len(new_archs)) if predict_step_size > max_step_size: break child_arch_pool = list( map(lambda x: utils.parse_seq_to_arch(x), new_archs)) # [[[conv],[reduc]]] logging.info("Generate %d new archs", len(child_arch_pool)) logging.info('Finish Searching') logging.info('Reranking top 5 architectures') # reranking top 5 top_archs = arch_pool[:5] if args.dataset == 'cifar10': top_archs_perf = train_and_evaluate_top_on_cifar10( top_archs, train_queue, valid_queue) elif args.dataset == 'cifar100': top_archs_perf = train_and_evaluate_top_on_cifar100( top_archs, train_queue, valid_queue) else: top_archs_perf = train_and_evaluate_top_on_imagenet( top_archs, train_queue, valid_queue) top_archs_sorted_indices = np.argsort(top_archs_perf)[::-1] top_archs = [top_archs[i] for i in top_archs_sorted_indices] top_archs_perf = [top_archs_perf[i] for i in top_archs_sorted_indices] with open(os.path.join(args.output_dir, 'arch_pool.final'), 'w') as fa: with open(os.path.join(args.output_dir, 'arch_pool.perf.final'), 'w') as fp: for arch, perf in zip(top_archs, top_archs_perf): arch = ' '.join(map(str, arch[0] + arch[1])) fa.write('{}\n'.format(arch)) fp.write('{}\n'.format(perf))