Пример #1
0
class DQNAgent():
    """Interacts with and learns from the environment."""
    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 ddqn=False,
                 dueling=False,
                 priority=False):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.ddqn = ddqn

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed,
                                   priority)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            experiences = self.memory.sample(get_n=UPDATE_EVERY)
            self.update_error(experiences, GAMMA)
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)
                self.update_error(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, _ = experiences

        ## TODO: compute and minimize the loss
        "*** YOUR CODE HERE ***"
        if self.ddqn:
            old_val = self.qnetwork_local(states).gather(-1, actions)
            with torch.no_grad():
                actions = self.qnetwork_local(next_states).argmax(-1,
                                                                  keepdim=True)
                maxQ = self.qnetwork_target(next_states).gather(-1, actions)
                target = rewards + gamma * maxQ * (1 - dones)
        else:  # Normal DQN
            with torch.no_grad():
                maxQ = self.qnetwork_target(next_states).max(-1,
                                                             keepdim=True)[0]
                target = rewards + gamma * maxQ * (1 - dones)
            old_val = self.qnetwork_local(states).gather(-1, actions)

        self.optimizer.zero_grad()
        loss = self.qnetwork_local.criterion(old_val, target)
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def update_error(self, experiences, gamma):
        states, actions, rewards, next_states, dones, idx = experiences

        ## TODO: compute and minimize the loss
        "*** YOUR CODE HERE ***"
        if self.ddqn:
            old_val = self.qnetwork_local(states).gather(-1, actions)
            with torch.no_grad():
                actions = self.qnetwork_local(next_states).argmax(-1,
                                                                  keepdim=True)
                maxQ = self.qnetwork_target(next_states).gather(-1, actions)
                target = rewards + gamma * maxQ * (1 - dones)
        else:  # Normal DQN
            with torch.no_grad():
                maxQ = self.qnetwork_target(next_states).max(-1,
                                                             keepdim=True)[0]
                target = rewards + gamma * maxQ * (1 - dones)
            old_val = self.qnetwork_local(states).gather(-1, actions)

        error = torch.abs(old_val - target).detach().numpy().squeeze()
        for i, err in zip(idx, error):
            self.memory.error_buffer[i] = err

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Пример #2
0
class Agent():
    def __init__(self, state_size, action_size, seed):
        ''' Initialization of the agent '''

        # Initialize state / action space sizes, and the counter for updating
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.t_step = 0

        # Initialize the two Q-networks (the local and target) and define the optimizer
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Initialize agent's replay buffer
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)

    def step(self, state, action, reward, next_state, done):
        ''' Store experience and learn if it is time to do so '''

        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:

            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        ''' Returns actions for given state as per current policy '''

        state = torch.from_numpy(state).float().unsqueeze(0).to(device)

        # Set the Q-network to evaluation mode (turn off training layers such as dropouts) and do a forward pass for the state
        # without computing gradients. Afterwards, return to training mode
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def soft_update(self, local_model, target_model, tau):
        ''' Soft update for the target Q-network '''

        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def learn(self, experiences, gamma):
        ''' Update local network weights using sampled experience tuples (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples '''

        # Unpack experiences
        states, actions, rewards, next_states, dones = experiences

        # Get predictions from local network, i.e. Q-values of the (state, action) pairs in the sampled batch of experiences
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Get training targets, i.e. current reward + max predicted Q-value for next state by target network, for each (state, action)
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Now compute the loss wrt these new targets
        loss = self.qnetwork_local.criterion(Q_expected, Q_targets)
        self.optimizer.zero_grad()  # ?!
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)