Пример #1
0
    root.setLevel(logging.DEBUG)

    dictionary, rev_dict = utils.get_dictionary(args.text)
    num_classes = len(dictionary)

    iterator = utils.tokenize(args.text,
                              dictionary,
                              batch_size=args.batch_size,
                              seq_len=args.seq_len)

    sess = tf.Session()
    model = SeqGAN(sess,
                   num_classes,
                   logdir=args.logdir,
                   learn_phase=args.learn_phase,
                   only_cpu=args.only_cpu)
    model.build()
    model.load(ignore_missing=True)

    for epoch in xrange(1, args.num_epochs + 1):
        for step in xrange(1, args.num_steps + 1):
            logging.info('epoch %d, step %d', epoch, step)
            model.train_batch(iterator.next())

        # Generates a sample from the model.
        g = model.generate(1000)
        print(utils.detokenize(g, rev_dict))

        # Saves the model to the logdir.
        model.save()
Пример #2
0
    root.setLevel(logging.DEBUG)

    dictionary, rev_dict = utils.get_dictionary(args.text, args.dictionary)
    num_classes = len(dictionary)

    iterator = utils.tokenize(args.text,
                              dictionary,
                              batch_size=args.batch_size,
                              seq_len=args.seq_len)

    sess = tf.Session()
    model = SeqGAN(sess,
                   num_classes,
                   logdir=args.logdir,
                   learn_phase=args.learn_phase,
                   only_cpu=args.only_cpu)
    model.build()
    model.load(ignore_missing=True)

    for epoch in range(1, args.num_epochs + 1):
        for step in range(1, args.num_steps + 1):
            logging.info('epoch %d, step %d', epoch, step)
            model.train_batch(next(iterator))

        # Generates a sample from the model.
        g = model.generate(1000)
        print(utils.detokenize(g, rev_dict))

        # Saves the model to the logdir.
        model.save()