def main(): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name]['path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # 加载数据 # 加载vocs path_vocs = [] for feature_name in feature_names: path_vocs.append(config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' data_dict = init_data( path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=config['model_params']['sequence_length'], model='train') # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], path_model=config['model_params']['path_model']) model.fit( data_dict=data_dict, dev_size=config['model_params']['dev_size'])
def main(): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] logger.info(feature_names) use_char_feature = config['model_params']['use_char_feature'] logger.info(use_char_feature) # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict = dict() feature_weight_dropout_dict = dict() feature_init_weight_dict = dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = config['model_params'][ 'embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = config['model_params'][ 'embed_params'][feature_name]['dropout_rate'] # embeding mat, 比voc多了两行, 因为voc从2开始编序, 0, 1行用0填充 path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] # 词嵌矩阵位置 # logger.info("%s init mat path: %s" % (feature_name, path_pre_train)) with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) logger.info(feature_weight_dropout_dict) logger.info(feature_weight_shape_dict) logger.info(feature_init_weight_dict) # char embedding shape if use_char_feature: # 暂时不考虑 feature_weight_shape_dict['char'] = config['model_params'][ 'embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: # 利用卷集层来提取char的信息 conv_filter_len_list = None conv_filter_size_list = None # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char'] ['path']) # vocs用于将文本数字序列化 for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] # 数据的分隔方式 sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] # 通过voc 将input f1 和输出 label 数字序列化 得到训练的输入和输出 # data_dict = None data_dict = init_data(path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=max_len, model='train', use_char_feature=use_char_feature, word_len=word_len) logger.info(data_dict) # 每个特征序列化后的数据 # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], # 句子被固定长度 nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], rnn_dropout=config['model_params']['bilstm_params']['rnn_dropout'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, cnn_dropout_rate=config['model_params']['conv_dropout'], word_length=word_len, path_model=config['model_params']['path_model'], last_train_sess_path=None, # 为了加快训练的速度我们继续载入前面训练的参数 transfer=False) # 是否对前面载入的参数进行迁移学习,True的话就重置LSTM的输出层 model.fit(data_dict=data_dict, dev_size=config['model_params']['dev_size']) """
def main(): # 加载配置文件 print("config5") with open('./train_config/config_b2b_tag_5_only_jieba.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] use_char_feature = config['model_params']['use_char_feature'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # char embedding shape if use_char_feature: feature_weight_shape_dict['char'] = \ config['model_params']['embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: conv_filter_len_list = None conv_filter_size_list = None # 加载数据 # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char']['path']) for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] data_dict = init_data(path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=max_len, model='train', use_char_feature=use_char_feature, word_len=word_len) # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], rnn_dropout=config['model_params']['bilstm_params']['rnn_dropout'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, cnn_dropout_rate=config['model_params']['conv_dropout'], word_length=word_len, path_model=config['model_params']['path_model']) model.fit(data_dict=data_dict, dev_size=config['model_params']['dev_size'])
feature_names=feature_names, sep=sep, vocs=vocs, max_len=config['model_params']['sequence_length'], model='train') # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], path_model=config['model_params']['path_model']) model.fit(data_dict=data_dict, dev_size=config['model_params']['dev_size']) # if __name__ == '__main__': # main()