Пример #1
0
    def __init__(self, args: argparse.Namespace = None):
        super().__init__()
        self.num_classes = args.num_classes
        self.latent_dim = args.latent_dim
        self.feature_dim = args.feature_dim
        self.batch_size = args.batch_size
        self.lr = args.lr

        self.class_noise_convertor = nn.ModuleDict({
            str(k): nn.Sequential(nn.Linear(self.feature_dim, self.latent_dim),
                                  nn.ReLU(),
                                  nn.Linear(self.latent_dim,
                                            self.latent_dim)).to(self.device)
            for k in range(self.num_classes)
        })

        self.generator = Generator(ngpu=1)
        self.generator.load_state_dict(torch.load(args.gen_weights))
        self.class_identifier = SiameseNet()
        self.class_identifier.load_state_dict(torch.load(args.siamese_weights))
        if args.generator_pre_train:
            self.generator.to(self.device).freeze()
        if args.siamese_pre_train:
            self.class_identifier.to(self.device).freeze()

        # self.class_similarity = nn.Linear(4096, 1)
        self.creterion = ContrastiveLoss(1)
        self.threshold = args.threshold

        self.train_acc = Accuracy()
        self.val_acc = Accuracy()
        self.test_acc = Accuracy()
Пример #2
0
 def __init__(self, model_path, *args, **kwargs):
     """
         - Load model from model_path 
         - Load state to the model
     """
     self.model = SiameseNet().cuda()
     self.ckpt = torch.load(model_path)
     self.model.load_state_dict(self.ckpt['model_state'])
Пример #3
0
def train_step():

    model = SiameseNet.SiameseNet()
    train_data = DataSet(mode='train', batch_size=4)
    img1, img2, labels = next(train_data)
    loss, pred_label, acc = model(img1, img2, labels)
    print(labels)
    print('loss: ', loss)
    print('predict_label:', pred_label)
    print('acc: ', acc)
Пример #4
0
def haha():
    a = tf.random.normal([1,164,164,3])
    b = tf.random.normal([1,164,164,3])
    label = tf.constant([1, 0])
    net = SiameseNet.SiameseNet()
    loss = net(a, b, label)

    seq = net.encoder
    seq(a)
    print(seq.summary())

    pprint(net.layers)
    print('\033[1;32mLoss is\033[0m')
    print(loss)
def putCharacters(image, db="database"):
    dbs = os.listdir(db)
    right = np.array(
        [np.expand_dims(cv2.imread(os.path.join(db, x), 0), -1) for x in dbs])
    names = [os.path.splitext(x)[0] for x in dbs]
    for face, x, y, w, h in giveAllFaces(image):
        face = cv2.resize(face, (100, 100), interpolation=cv2.INTER_AREA)
        face = np.expand_dims(face, -1)
        left = np.array([face for _ in range(len(dbs))])
        probs = np.squeeze(SiameseNet.predict([left, right]))
        index = np.argmax(probs)
        prob = probs[index]
        name = "Unknown"
        if prob > 0.5:
            name = names[index]
        putBoxText(image, x, y, w, h, text=name + "({:.2f})".format(prob))
Пример #6
0
    def test(self):

        # Load best model
        model = SiameseNet()
        _, _, _, model_state, _ = self.load_checkpoint(best=self.config.best)
        model.load_state_dict(model_state)
        if self.config.use_gpu:
            model.cuda()

        test_loader = get_test_loader(self.config.data_dir, self.config.way,
                                      self.config.test_trials,
                                      self.config.seed,
                                      self.config.num_workers,
                                      self.config.pin_memory)

        correct_sum = 0
        num_test = test_loader.dataset.trials
        print(f"[*] Test on {num_test} pairs.")

        pbar = tqdm(enumerate(test_loader), total=num_test, desc="Test")
        with torch.no_grad():
            for i, (x1, x2, _) in pbar:

                if self.config.use_gpu:
                    x1, x2 = x1.to(self.device), x2.to(self.device)

                # compute log probabilities
                out = model(x1, x2)

                y_pred = torch.sigmoid(out)
                y_pred = torch.argmax(y_pred)
                if y_pred == 0:
                    correct_sum += 1

                pbar.set_postfix_str(f"accuracy: {correct_sum / num_test}")

        test_acc = (100. * correct_sum) / num_test
        print(f"Test Acc: {correct_sum}/{num_test} ({test_acc:.2f}%)")
Пример #7
0
        camera_id.append(int(camera[0]))
    return camera_id, labels


gallery_path = image_datasets['gallery'].imgs
query_path = image_datasets['query'].imgs

gallery_cam, gallery_label = get_id(gallery_path)
query_cam, query_label = get_id(query_path)


######################################################################
# Load Collected data Trained model
print('-------test-----------')
embedding_net = ft_net_dense(751)
model_siamese = SiameseNet(embedding_net)
model_siamese = load_network_easy(model_siamese, name)
model_siamese = model_siamese.eval()
if use_gpu:
    model = model_siamese.cuda()

# Extract feature
with torch.no_grad():
    gallery_feature = extract_feature(model, dataloaders['gallery'])
    query_feature = extract_feature(model, dataloaders['query'])


result = {'gallery_f': gallery_feature.numpy(), 'gallery_label': gallery_label, 'gallery_cam': gallery_cam,
          'query_f': query_feature.numpy(), 'query_label': query_label, 'query_cam': query_cam}
scipy.io.savemat('pytorch_result.mat', result)
    output = (np.squeeze(probs) > 0.5) * 1
    percent_correct = (output == targets).sum() * 100 / N
    if verbose:
        print("Got an average of {}% {} way one-shot learning accuracy".format(
            percent_correct, N))
    return percent_correct


if __name__ == "__main__":
    evaluate_every = 7000
    loss_every = 500
    batch_size = 32
    N = 1000
    best = 0
    loss_history = []
    for i in range(0, 200000):
        (inputs, targets) = getMiniBatch(batch_size, path="train")
        loss = SiameseNet.train_on_batch(inputs, targets)
        loss_history.append(loss)
        if i % loss_every == 0:
            vloss = SiameseNet.test_on_batch(
                *getMiniBatch(batch_size, path="eval"))
            print(
                "iteration {}, training loss: {:.7f}, validation loss : {:.7f}"
                .format(i, np.mean(loss_history), vloss))
            loss_history.clear()
            val_acc = test_oneshot(SiameseNet, N, verbose=True)
            if val_acc >= best:
                print("saving")
                SiameseNet.save('saved_best')
                best = val_acc
Пример #9
0
    gflags.DEFINE_float  ("lr", 0.001, "learning rate")
    gflags.DEFINE_integer("valid_every", 1, "valid model after each test_every iter.")
    gflags.DEFINE_integer("max_iter", 40, "number of iteration - n epoch are max_iter/batch_size")
    

    gflags.DEFINE_string("gpu_ids", "0", "gpu ids used to train")
    Flags(sys.argv)

    trainSet    = Dataset(Flags.train_path,Flags.test_path,Flags.valid_path,Flags.max_iter,"train")
    trainLoader = DataLoader(trainSet, batch_size=Flags.batch_size, shuffle=False, num_workers=Flags.workers)

    validSet    = Dataset(Flags.valid_path,Flags.test_path,Flags.valid_path,Flags.max_iter,"valid")
    validLoader = DataLoader(validSet, batch_size=Flags.batch_size, shuffle=False, num_workers=Flags.workers)

    loss_BCE    = torch.nn.BCEWithLogitsLoss(size_average=True)
    net         = SiameseNet()

    save_path   = os.path.join(Flags.save_folder,"save_data")
    makeFolder(save_path)
    makeFolder(os.path.join(save_path,"models"))

    # multi gpu
    if Flags.cuda:
        os.environ["CUDA_VISIBLE_DEVICES"] = Flags.gpu_ids
        if len(Flags.gpu_ids.split(",")) > 1:
           net = torch.nn.DataParallel(net)
        net.cuda()
    optimizer = torch.optim.Adam(net.parameters(),lr = Flags.lr )
    optimizer.zero_grad()
    loss_val   = 0
    valid_list = []
Пример #10
0
class QueryModel():
    """
        Get the confidence score for two PIL images

        Args
            :param model_path str: path to the model to be loaded

        Properties
            :param self.model nn.Module: Model Type to be used for inference. 
            :param self.ckpt: Loaded model information
            
    """
    def __init__(self, model_path, *args, **kwargs):
        """
            - Load model from model_path 
            - Load state to the model
        """
        self.model = SiameseNet().cuda()
        self.ckpt = torch.load(model_path)
        self.model.load_state_dict(self.ckpt['model_state'])

    @staticmethod
    def resizeImage(image):
        """
            resize image to model parameters.

            Args
                :param image PIL.Image: PIL Image

            Return
                :param image PIL.Image: resized image
        """
        return image.resize((120, 80), Image.ANTIALIAS)
        # return image.resize((96, 64), Image.ANTIALIAS)

    def ImageToTensor(self, image):
        """
            resize and transform PIL image to tensor

            Args
                :param image PIL.Image: PIL Image

            Return
                :param tensor torch.Tesnor: PyTorch Tensor
            
        """
        image = self.resizeImage(image)
        transform = transforms.Compose([transforms.ToTensor()])
        return torch.reshape(transform(image), [1, 1, 80, 120])

    def getConfidence(self, tensor0, tensor1):
        """
            get confidence on the two tensors from the model
            and apply sigmoid.

            Args
                :param tensor0 torch.Tensor: transformed image tensor to be used for inference
                :param tensor1 torch.Tensor: transformed image tensor to be used for inference

            Return
                :param output torch.Tensor: confidence tensor    
        """
        x0, x1 = Variable(tensor0).cuda(), Variable(tensor1).cuda()
        output = self.model(x0, x1)
        output = F.sigmoid(output)

        return output

    def predict(self, img0, img1):
        """ 
            Infer confidence on the two images from the model 
            and return it.

            Args
                :param img0 PIL.Image: first image to be compared
                :param img1 PIL.Image: second image to be compared

            Return
                :param output torch.Tensor: confidence tensor
                                            confidence > 0.5, Similar Pairs
                                            confidence < 0.5, Dissimilar Pairs    
        """
        img0_tensor = self.ImageToTensor(img0)
        img1_tensor = self.ImageToTensor(img1)
        output = self.getConfidence(img0_tensor, img1_tensor)

        return output
Пример #11
0
def print_parameters():
    count_parameters(SiameseNet())
Пример #12
0
def loadModel(path):
    model = SiameseNet()
    model.load_state_dict(torch.load(path, map_location=torch.device('cuda')))
    model.cuda()
    model.eval()
    return model
Пример #13
0
    def __init__(self, config, data_loader, layer_hyperparams):
        """
        Construct a new Trainer instance.

        Args
        ----
        - config: object containing command line arguments.
        - data_loader: data iterator.
        - layer_hyperparams: dict containing layer-wise hyperparameters
          such as the initial learning rate, the end momentum, and the l2
          regularization strength.
        """
        self.config = config
        self.layer_hyperparams = layer_hyperparams

        if config.is_train:
            self.train_loader = data_loader[0]
            self.valid_loader = data_loader[1]
            self.num_train = len(self.train_loader.dataset)
            self.num_valid = self.valid_loader.dataset.trials
        else:
            self.test_loader = data_loader
            self.num_test = self.test_loader.dataset.trials

        self.model = SiameseNet()
        if config.use_gpu:
            self.model.cuda()

        # model params
        self.num_params = sum(
            [p.data.nelement() for p in self.model.parameters()])
        self.num_model = get_num_model(config)
        self.num_layers = len(list(self.model.children()))

        print('[*] Number of model parameters: {:,}'.format(self.num_params))

        # path params
        self.ckpt_dir = os.path.join(config.ckpt_dir, self.num_model)
        self.logs_dir = os.path.join(config.logs_dir, self.num_model)

        # misc params
        self.resume = config.resume
        self.use_gpu = config.use_gpu
        self.dtype = (torch.cuda.FloatTensor
                      if self.use_gpu else torch.FloatTensor)

        # optimization params
        self.best = config.best
        self.best_valid_acc = 0.
        self.epochs = config.epochs
        self.start_epoch = 0
        self.lr_patience = config.lr_patience
        self.train_patience = config.train_patience
        self.counter = 0

        # grab layer-wise hyperparams
        self.init_lrs = self.layer_hyperparams['layer_init_lrs']
        self.init_momentums = [config.init_momentum] * self.num_layers
        self.end_momentums = self.layer_hyperparams['layer_end_momentums']
        self.l2_regs = self.layer_hyperparams['layer_l2_regs']

        # compute temper rate for momentum
        if self.epochs == 1:
            f = lambda max, min: min
        else:
            f = lambda max, min: (max - min) / (self.epochs - 1)
        self.momentum_temper_rates = [
            f(x, y) for x, y in zip(self.end_momentums, self.init_momentums)
        ]

        # set global learning rates and momentums
        self.lrs = self.init_lrs
        self.momentums = self.init_momentums

        # # initialize optimizer
        # optim_dict = []
        # for i, layer in enumerate(self.model.children()):
        #     group = {}
        #     group['params'] = layer.parameters()
        #     group['lr'] = self.lrs[i]
        #     group['momentum'] = self.momentums[i]
        #     group['weight_decay'] = self.l2_regs[i]
        #     optim_dict.append(group)
        # self.optimizer = optim.SGD(optim_dict)
        # self.optimizer = optim.SGD(
        #     self.model.parameters(), lr=1e-3, momentum=0.9, weight_decay=4e-4,
        # )
        self.optimizer = optim.Adam(
            self.model.parameters(),
            lr=3e-4,
            weight_decay=6e-5,
        )
                        required=True)
    parser.add_argument("-m",
                        "--model",
                        dest="model",
                        help="Saved Model",
                        required=True)
    parser.add_argument("-i",
                        "--image",
                        nargs='+',
                        dest="images",
                        help="Image Paths",
                        required=True)
    args = parser.parse_args()
    print("############ Please wait while model is loading. ###############")
    val_acc = None
    while val_acc == None:
        try:
            SiameseNet.load_weights(args.model)
            val_acc = test_oneshot(SiameseNet, 1000, verbose=0, path="../eval")
            print("Model loaded with Accuracy: {}".format(val_acc))
        except:
            print("Exception Occured: Ignoring")

    for image in args.images:
        im = cv2.imread(image, 1)
        putCharacters(
            im,
            db=args.database,
        )
        plt.imshow(im)
        plt.show()
Пример #15
0
                 + list(map(id, model.classifier.parameters()))
    stage_1_base_id = list(map(id, model.embedding_net.parameters()))
    stage_1_base_params = filter(lambda p: id(p) in stage_1_base_id, model.parameters())
    stage_1_classifier_params = filter(lambda p: id(p) in stage_1_id and id(p) not in stage_1_base_id,
                                       model.parameters())

    return stage_1_base_params, stage_1_classifier_params


stage_1 = False
stage_2 = True

if stage_1:
    margin = 1.
    embedding_net = ft_net_dense()
    model = SiameseNet(embedding_net)
    # model = Sggnn(SiameseNet(embedding_net))
    if use_gpu:
        model.cuda()
    # save_whole_network(model, 'best')
    # exit()
    loss_fn = ContrastiveLoss(margin)
    # loss_fn = SigmoidLoss()
    # loss_fn = nn.CrossEntropyLoss()

    lr = 1e-3
    step = 8

    # stage_1_base_params, stage_1_classifier_params = stage_1_params(model)
    # optimizer = optim.Adam([
    #     {'params': stage_1_base_params, 'lr': 1 * lr},
Пример #16
0
import paddle
from paddle.io import Dataset, DataLoader
from data_reader import MyDataset
from model import SiameseNet
from paddle.vision.transforms import functional as F
import paddle.nn as nn
from PIL import Image

net = SiameseNet()
net.eval()
paddle.set_device("gpu:0")

layer_state_dict = paddle.load("basic_acc38.pdparams")
net.set_state_dict(layer_state_dict)
dist = nn.PairwiseDistance(keepdim=True)


def load_img(path1, path2):
    img1 = Image.open(path1)
    img2 = Image.open(path2)
    img1 = img1.convert("L")
    img2 = img2.convert("L")
    img1 = img1.resize((100, 100))
    img2 = img2.resize((100, 100))
    return F.to_tensor(img1), F.to_tensor(img2)


with open("train_list.txt", "r") as r:
    lines = r.readlines()
    index = 0
    for line in lines:
Пример #17
0
from model import ResNet

try:
    src_path = sys.argv[1]
except:
    print("请输入需要匹配的图片路径!")
    exit(-1)

model = "basic"

if model == "resnet":
    size = 100
    net = ResNet()
elif model == "basic":
    size = 100
    net = SiameseNet()

net.eval()
paddle.set_device("gpu:0")

layer_state_dict = paddle.load(model + "_acc38.pdparams")
net.set_state_dict(layer_state_dict)
dist = nn.PairwiseDistance(keepdim=True)


def load_img(path1, path2):
    img1 = Image.open(path1)
    img2 = Image.open(path2)
    img1 = img1.convert("L")
    img2 = img2.convert("L")
    img1 = img1.resize((size, size))
siamese_train_dataset = SiameseMarket(train_dataset, train=True)
siamese_test_dataset = SiameseMarket(test_dataset, train=False)

print(len(siamese_test_dataset))
print(len(siamese_train_dataset))
# a,b = siamese_test_dataset[0]
# print(b)
# print(type(a))

trainloader_l, trainloader_u, valloader, testloader = get_dataloaders(
    siamese_train_dataset, siamese_test_dataset, args.train_size,
    args.val_size, args.batch_size)

device = torch.device("cuda:0")

net = SiameseNet(10, False)

net = net.to(device)

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)

model_name = 'reid_pl' + str(args.train_size)
alpha = 0.0
val_min_acc = 0.0
test_acc = 0.0
flag = False

for epoch in range(args.epochs):
    if (epoch > args.T1 and epoch <= args.T2):
        alpha = (epoch - args.T1) / (args.T2 - args.T1)
Пример #19
0
class Trainer(object):
    """
    Trainer encapsulates all the logic necessary for training
    the Siamese Network model.

    All hyperparameters are provided by the user in the
    config file.
    """
    def __init__(self, config, data_loader, layer_hyperparams):
        """
        Construct a new Trainer instance.

        Args
        ----
        - config: object containing command line arguments.
        - data_loader: data iterator.
        - layer_hyperparams: dict containing layer-wise hyperparameters
          such as the initial learning rate, the end momentum, and the l2
          regularization strength.
        """
        self.config = config
        self.layer_hyperparams = layer_hyperparams

        if config.is_train:
            self.train_loader = data_loader[0]
            self.valid_loader = data_loader[1]
            self.num_train = len(self.train_loader.dataset)
            self.num_valid = self.valid_loader.dataset.trials
        else:
            self.test_loader = data_loader
            self.num_test = self.test_loader.dataset.trials

        self.model = SiameseNet()
        if config.use_gpu:
            self.model.cuda()

        # model params
        self.num_params = sum(
            [p.data.nelement() for p in self.model.parameters()])
        self.num_model = get_num_model(config)
        self.num_layers = len(list(self.model.children()))

        print('[*] Number of model parameters: {:,}'.format(self.num_params))

        # path params
        self.ckpt_dir = os.path.join(config.ckpt_dir, self.num_model)
        self.logs_dir = os.path.join(config.logs_dir, self.num_model)

        # misc params
        self.resume = config.resume
        self.use_gpu = config.use_gpu
        self.dtype = (torch.cuda.FloatTensor
                      if self.use_gpu else torch.FloatTensor)

        # optimization params
        self.best = config.best
        self.best_valid_acc = 0.
        self.epochs = config.epochs
        self.start_epoch = 0
        self.lr_patience = config.lr_patience
        self.train_patience = config.train_patience
        self.counter = 0

        # grab layer-wise hyperparams
        self.init_lrs = self.layer_hyperparams['layer_init_lrs']
        self.init_momentums = [config.init_momentum] * self.num_layers
        self.end_momentums = self.layer_hyperparams['layer_end_momentums']
        self.l2_regs = self.layer_hyperparams['layer_l2_regs']

        # compute temper rate for momentum
        if self.epochs == 1:
            f = lambda max, min: min
        else:
            f = lambda max, min: (max - min) / (self.epochs - 1)
        self.momentum_temper_rates = [
            f(x, y) for x, y in zip(self.end_momentums, self.init_momentums)
        ]

        # set global learning rates and momentums
        self.lrs = self.init_lrs
        self.momentums = self.init_momentums

        # # initialize optimizer
        # optim_dict = []
        # for i, layer in enumerate(self.model.children()):
        #     group = {}
        #     group['params'] = layer.parameters()
        #     group['lr'] = self.lrs[i]
        #     group['momentum'] = self.momentums[i]
        #     group['weight_decay'] = self.l2_regs[i]
        #     optim_dict.append(group)
        # self.optimizer = optim.SGD(optim_dict)
        # self.optimizer = optim.SGD(
        #     self.model.parameters(), lr=1e-3, momentum=0.9, weight_decay=4e-4,
        # )
        self.optimizer = optim.Adam(
            self.model.parameters(),
            lr=3e-4,
            weight_decay=6e-5,
        )

        # # learning rate scheduler
        # self.scheduler = StepLR(
        #     self.optimizer, step_size=self.lr_patience, gamma=0.99,
        # )

    def train(self):
        if self.resume:
            self.load_checkpoint(best=False)

        # switch to train mode
        self.model.train()

        # create train and validation log files
        optim_file = open(os.path.join(self.logs_dir, 'optim.csv'), 'w')
        train_file = open(os.path.join(self.logs_dir, 'train.csv'), 'w')
        valid_file = open(os.path.join(self.logs_dir, 'valid.csv'), 'w')

        print("\n[*] Train on {} sample pairs, validate on {} trials".format(
            self.num_train, self.num_valid))

        for epoch in range(self.start_epoch, self.epochs):
            # self.decay_lr()
            # self.temper_momentum(epoch)
            #
            # # log lrs and momentums
            # n = self.num_layers
            # msg = (
            #     "{}, " + ", ".join(["{}"] * n) + ", " + ", ".join(["{}"] * n)
            # )
            # optim_file.write(msg.format(
            #     epoch, *self.momentums, *self.lrs)
            # )

            print('\nEpoch: {}/{}'.format(epoch + 1, self.epochs))

            train_loss = self.train_one_epoch(epoch, train_file)
            valid_acc = self.validate(epoch, valid_file)

            # check for improvement
            is_best = valid_acc > self.best_valid_acc
            msg = "train loss: {:.3f} - val acc: {:.3f}"
            if is_best:
                msg += " [*]"
                self.counter = 0
            print(msg.format(train_loss, valid_acc))

            # checkpoint the model
            if not is_best:
                self.counter += 1
            if self.counter > self.train_patience:
                print("[!] No improvement in a while, stopping training.")
                return
            self.best_valid_acc = max(valid_acc, self.best_valid_acc)
            self.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'model_state': self.model.state_dict(),
                    'optim_state': self.optimizer.state_dict(),
                    'best_valid_acc': self.best_valid_acc,
                }, is_best)
        # release resources
        optim_file.close()
        train_file.close()
        valid_file.close()

    def train_one_epoch(self, epoch, file):
        train_batch_time = AverageMeter()
        train_losses = AverageMeter()

        tic = time.time()
        with tqdm(total=self.num_train) as pbar:
            for i, (x1, x2, y) in enumerate(self.train_loader):
                if self.use_gpu:
                    x1, x2, y = x1.cuda(), x2.cuda(), y.cuda()
                x1, x2, y = Variable(x1), Variable(x2), Variable(y)

                # split input pairs along the batch dimension
                batch_size = x1.shape[0]

                out = self.model(x1, x2)
                loss = F.binary_cross_entropy_with_logits(out, y)

                # compute gradients and update
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                # store batch statistics
                toc = time.time()
                train_losses.update(loss.data[0], batch_size)
                train_batch_time.update(toc - tic)
                tic = time.time()

                pbar.set_description(("{:.1f}s - loss: {:.3f}".format(
                    train_batch_time.val,
                    train_losses.val,
                )))
                pbar.update(batch_size)

                # log loss
                iter = (epoch * len(self.train_loader)) + i
                file.write('{},{}\n'.format(iter, train_losses.val))

            return train_losses.avg

    def validate(self, epoch, file):
        # switch to evaluate mode
        self.model.eval()

        correct = 0
        for i, (x1, x2) in enumerate(self.valid_loader):
            if self.use_gpu:
                x1, x2 = x1.cuda(), x2.cuda()
            x1, x2 = Variable(x1, volatile=True), Variable(x2, volatile=True)

            batch_size = x1.shape[0]

            # compute log probabilities
            out = self.model(x1, x2)
            log_probas = F.sigmoid(out)

            # get index of max log prob
            pred = log_probas.data.max(0)[1][0]
            if pred == 0:
                correct += 1

        # compute acc and log
        valid_acc = (100. * correct) / self.num_valid
        iter = epoch
        file.write('{},{}\n'.format(iter, valid_acc))
        return valid_acc

    def test(self):
        # load best model
        self.load_checkpoint(best=self.best)

        # switch to evaluate mode
        self.model.eval()

        correct = 0
        for i, (x1, x2) in enumerate(self.test_loader):
            if self.use_gpu:
                x1, x2 = x1.cuda(), x2.cuda()
            x1, x2 = Variable(x1, volatile=True), Variable(x2, volatile=True)

            batch_size = x1.shape[0]

            # compute log probabilities
            out = self.model(x1, x2)
            log_probas = F.sigmoid(out)

            # get index of max log prob
            pred = log_probas.data.max(0)[1][0]
            if pred == 0:
                correct += 1

        test_acc = (100. * correct) / self.num_test
        print("[*] Test Acc: {}/{} ({:.2f}%)".format(correct, self.num_test,
                                                     test_acc))

    def temper_momentum(self, epoch):
        """
        This function linearly increases the per-layer momentum to
        a predefined ceiling over a set amount of epochs.
        """
        if epoch == 0:
            return
        self.momentums = [
            x + y for x, y in zip(self.momentums, self.momentum_temper_rates)
        ]
        for i, param_group in enumerate(self.optimizer.param_groups):
            param_group['momentum'] = self.momentums[i]

    def decay_lr(self):
        """
        This function linearly decays the per-layer lr over a set
        amount of epochs.
        """
        self.scheduler.step()
        for i, param_group in enumerate(self.optimizer.param_groups):
            self.lrs[i] = param_group['lr']

    def save_checkpoint(self, state, is_best):
        filename = 'model_ckpt.tar'
        ckpt_path = os.path.join(self.ckpt_dir, filename)
        torch.save(state, ckpt_path)

        if is_best:
            filename = 'best_model_ckpt.tar'
            shutil.copyfile(ckpt_path, os.path.join(self.ckpt_dir, filename))

    def load_checkpoint(self, best=False):
        print("[*] Loading model from {}".format(self.ckpt_dir))

        filename = 'model_ckpt.tar'
        if best:
            filename = 'best_model_ckpt.tar'
        ckpt_path = os.path.join(self.ckpt_dir, filename)
        ckpt = torch.load(ckpt_path)

        # load variables from checkpoint
        self.start_epoch = ckpt['epoch']
        self.best_valid_acc = ckpt['best_valid_acc']
        self.model.load_state_dict(ckpt['model_state'])
        self.optimizer.load_state_dict(ckpt['optim_state'])

        if best:
            print("[*] Loaded {} checkpoint @ epoch {} "
                  "with best valid acc of {:.3f}".format(
                      filename, ckpt['epoch'], ckpt['best_valid_acc']))
        else:
            print("[*] Loaded {} checkpoint @ epoch {}".format(
                filename, ckpt['epoch']))
Пример #20
0
    def train(self):
        # Dataloader
        train_loader, valid_loader = get_train_validation_loader(
            self.config.data_dir, self.config.batch_size,
            self.config.num_train, self.config.augment, self.config.way,
            self.config.valid_trials, self.config.shuffle, self.config.seed,
            self.config.num_workers, self.config.pin_memory)

        # Model, Optimizer, criterion
        model = SiameseNet()
        if self.config.optimizer == "SGD":
            optimizer = optim.SGD(model.parameters(), lr=self.config.lr)
        else:
            optimizer = optim.Adam(model.parameters())
        criterion = torch.nn.BCEWithLogitsLoss()

        if self.config.use_gpu:
            model.cuda()

        # Load check point
        if self.config.resume:
            start_epoch, best_epoch, best_valid_acc, model_state, optim_state = self.load_checkpoint(
                best=False)
            model.load_state_dict(model_state)
            optimizer.load_state_dict(optim_state)
            one_cycle = OneCyclePolicy(optimizer,
                                       self.config.lr,
                                       (self.config.epochs - start_epoch) *
                                       len(train_loader),
                                       momentum_rng=[0.85, 0.95])
        else:
            best_epoch = 0
            start_epoch = 0
            best_valid_acc = 0
            one_cycle = OneCyclePolicy(optimizer,
                                       self.config.lr,
                                       self.config.epochs * len(train_loader),
                                       momentum_rng=[0.85, 0.95])

        # create tensorboard summary and add model structure.
        writer = SummaryWriter(os.path.join(self.config.logs_dir, 'logs'),
                               filename_suffix=self.config.num_model)
        im1, im2, _ = next(iter(valid_loader))
        writer.add_graph(model, [im1.to(self.device), im2.to(self.device)])

        counter = 0
        num_train = len(train_loader)
        num_valid = len(valid_loader)
        print(
            f"[*] Train on {len(train_loader.dataset)} sample pairs, validate on {valid_loader.dataset.trials} trials"
        )

        # Train & Validation
        main_pbar = tqdm(range(start_epoch, self.config.epochs),
                         initial=start_epoch,
                         position=0,
                         total=self.config.epochs,
                         desc="Process")
        for epoch in main_pbar:
            train_losses = AverageMeter()
            valid_losses = AverageMeter()

            # TRAIN
            model.train()
            train_pbar = tqdm(enumerate(train_loader),
                              total=num_train,
                              desc="Train",
                              position=1,
                              leave=False)
            for i, (x1, x2, y) in train_pbar:
                if self.config.use_gpu:
                    x1, x2, y = x1.to(self.device), x2.to(self.device), y.to(
                        self.device)
                out = model(x1, x2)
                loss = criterion(out, y.unsqueeze(1))

                # compute gradients and update
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                one_cycle.step()

                # store batch statistics
                train_losses.update(loss.item(), x1.shape[0])

                # log loss
                writer.add_scalar("Loss/Train", train_losses.val,
                                  epoch * len(train_loader) + i)
                train_pbar.set_postfix_str(f"loss: {train_losses.val:0.3f}")

            # VALIDATION
            model.eval()
            valid_acc = 0
            correct_sum = 0
            valid_pbar = tqdm(enumerate(valid_loader),
                              total=num_valid,
                              desc="Valid",
                              position=1,
                              leave=False)
            with torch.no_grad():
                for i, (x1, x2, y) in valid_pbar:

                    if self.config.use_gpu:
                        x1, x2, y = x1.to(self.device), x2.to(
                            self.device), y.to(self.device)

                    # compute log probabilities
                    out = model(x1, x2)
                    loss = criterion(out, y.unsqueeze(1))

                    y_pred = torch.sigmoid(out)
                    y_pred = torch.argmax(y_pred)
                    if y_pred == 0:
                        correct_sum += 1

                    # store batch statistics
                    valid_losses.update(loss.item(), x1.shape[0])

                    # compute acc and log
                    valid_acc = correct_sum / num_valid
                    writer.add_scalar("Loss/Valid", valid_losses.val,
                                      epoch * len(valid_loader) + i)
                    valid_pbar.set_postfix_str(f"accuracy: {valid_acc:0.3f}")
            writer.add_scalar("Acc/Valid", valid_acc, epoch)

            # check for improvement
            if valid_acc > best_valid_acc:
                is_best = True
                best_valid_acc = valid_acc
                best_epoch = epoch
                counter = 0
            else:
                is_best = False
                counter += 1

            # checkpoint the model
            if counter > self.config.train_patience:
                print("[!] No improvement in a while, stopping training.")
                return

            if is_best or epoch % 5 == 0 or epoch == self.config.epochs:
                self.save_checkpoint(
                    {
                        'epoch': epoch,
                        'model_state': model.state_dict(),
                        'optim_state': optimizer.state_dict(),
                        'best_valid_acc': best_valid_acc,
                        'best_epoch': best_epoch,
                    }, is_best)

            main_pbar.set_postfix_str(
                f"best acc: {best_valid_acc:.3f} best epoch: {best_epoch} ")

            tqdm.write(
                f"[{epoch}] train loss: {train_losses.avg:.3f} - valid loss: {valid_losses.avg:.3f} - valid acc: {valid_acc:.3f} {'[BEST]' if is_best else ''}"
            )

        # release resources
        writer.close()
Пример #21
0
                    num_workers=8)


#=========================================================================================================
#================================ 2. BUILDING MODEL


device = 'cuda'

# Hyperparameters
LEARNING_RATE = 1e-3
HIDDEN_LAYER = 100
M = 10

# Model
model = SiameseNet(100).to(device)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
criterion = SinkhornDivergenceLoss(lbda=0.1, max_iter=100, p=2, reduction='none')

# Count the number of parameters in the network
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('\n>> Learning: {} parameters\n'.format(params))


#=========================================================================================================
#================================ 3. MAIN

D = 4

# Training procedure
Пример #22
0
class RobustClassifier(LightningModule):
    def __init__(self, args: argparse.Namespace = None):
        super().__init__()
        self.num_classes = args.num_classes
        self.latent_dim = args.latent_dim
        self.feature_dim = args.feature_dim
        self.batch_size = args.batch_size
        self.lr = args.lr

        self.class_noise_convertor = nn.ModuleDict({
            str(k): nn.Sequential(nn.Linear(self.feature_dim, self.latent_dim),
                                  nn.ReLU(),
                                  nn.Linear(self.latent_dim,
                                            self.latent_dim)).to(self.device)
            for k in range(self.num_classes)
        })

        self.generator = Generator(ngpu=1)
        self.generator.load_state_dict(torch.load(args.gen_weights))
        self.class_identifier = SiameseNet()
        self.class_identifier.load_state_dict(torch.load(args.siamese_weights))
        if args.generator_pre_train:
            self.generator.to(self.device).freeze()
        if args.siamese_pre_train:
            self.class_identifier.to(self.device).freeze()

        # self.class_similarity = nn.Linear(4096, 1)
        self.creterion = ContrastiveLoss(1)
        self.threshold = args.threshold

        self.train_acc = Accuracy()
        self.val_acc = Accuracy()
        self.test_acc = Accuracy()

    @staticmethod
    def add_to_argparse(parser):
        parser.add_argument("--num_classes",
                            type=int,
                            default=10,
                            help="Number of Classes")
        parser.add_argument("--lr", type=float, default=3e-4)
        parser.add_argument("--threshold", type=float, default=0.5)
        parser.add_argument("--batch_size", type=int, default=16)
        parser.add_argument("--latent_dim", type=int, default=100)
        parser.add_argument("--feature_dim", type=int, default=100)
        parser.add_argument("--gen_weights",
                            type=str,
                            default="weights/gen_weights.pth")
        parser.add_argument("--siamese_weights",
                            type=str,
                            default="weights/siamese_weights.pth")
        parser.add_argument("--generator_pre_train",
                            dest='generator_pre_train',
                            default=True,
                            action='store_true')
        parser.add_argument("--no_generator_pre_train",
                            dest='generator_pre_train',
                            default=True,
                            action='store_false')
        parser.set_defaults(generator_pre_train=True)
        parser.add_argument("--siamese_pre_train",
                            dest='siamese_pre_train',
                            default=True,
                            action='store_true')
        parser.add_argument("--no_siamese_pre_train",
                            dest='siamese_pre_train',
                            default=True,
                            action='store_false')
        parser.set_defaults(siamese_pre_train=True)
        return parser

    def forward(self, x):
        batch_size = x.size(0)
        embeddings1, embeddings2 = torch.Tensor([]), torch.Tensor([])
        scores = torch.ones(self.num_classes, batch_size)
        noise = torch.rand(batch_size, self.feature_dim, device=self.device)
        for class_idx, model in self.class_noise_convertor.items():
            class_noise = model(noise).view(batch_size, -1, 1, 1)
            gen_imgs = self.generator(class_noise)
            embed1, embed2 = self.class_identifier(gen_imgs, x)
            embeddings1 = torch.cat(
                (embeddings1.to(self.device), embed1.to(self.device)), dim=0)
            embeddings2 = torch.cat(
                (embeddings2.to(self.device), embed2.to(self.device)), dim=0)
            scores[int(class_idx)] = nn.functional.cosine_similarity(embed1,
                                                                     embed2,
                                                                     dim=1)
        self.register_buffer("embeddings_1", embeddings1.view(-1, 4096))
        self.register_buffer("embeddings_2", embeddings2.view(-1, 4096))
        scores = torch.softmax(scores[scores > 0].view(batch_size, -1), dim=1)
        pred = torch.argmax(scores, dim=1).to(
            self.device
        )  #torch.Tensor([torch.argmax(img_score) if (img_score.max()-img_score.min())>0.5 else -1 for img_score in scores]).to(self.device)
        return pred

    def calculate_loss(self, y_true):
        siamese_labels = torch.Tensor([])
        for class_idx in range(self.num_classes):
            temp = torch.from_numpy(
                np.where(y_true.cpu().numpy() == class_idx, 1, 0))
            siamese_labels = torch.cat(
                (siamese_labels.to(self.device), temp.to(self.device)), dim=0)
        result = self.creterion(self.embeddings_1, self.embeddings_2,
                                siamese_labels)
        return result

    def training_step(self, batch, batch_idx):
        img, y_true = batch
        img, y_true = img.to(self.device), y_true.to(self.device)
        y_pred = self(img)
        result = self.calculate_loss(y_true)
        self.train_acc(y_pred, y_true)
        self.log('train_acc', self.train_acc, on_epoch=True, on_step=False)
        self.log('train_loss', result, on_step=True)

        return result

    def validation_step(self, batch, batch_idx):
        img, y_true = batch
        img, y_true = img.to(self.device), y_true.to(self.device)
        y_pred = self(img)
        val_loss = self.calculate_loss(y_true)
        self.log('val_loss', val_loss, prog_bar=True)
        self.val_acc(y_pred, y_true)
        self.log('val_acc', self.val_acc, on_epoch=True, on_step=False)

    def test_step(self, batch, batch_idx):
        img, y_true = batch
        img, y_true = img.to(self.device), y_true.to(self.device)
        y_pred = self(img)
        self.test_acc(y_pred, y_true)
        self.log('test_acc', self.test_acc, on_epoch=True, on_step=False)

    def configure_optimizers(self):
        optimizer = optim.Adam(filter(lambda p: p.requires_grad_,
                                      self.parameters()),
                               lr=self.lr)
        return [optimizer], []
Пример #23
0
    dataset_path.append(image_datasets[dataset_list[i]].imgs)

dataset_cam = []
dataset_label = []
dataset_filename = []
for i in range(len(dataset_list)):
    cam, label, filename = get_id(dataset_path[i])
    dataset_cam.append(cam)
    dataset_label.append(label)
    dataset_filename.append(filename)
######################################################################
# Load Collected data Trained model
print('-------test-----------')
class_num = len(os.listdir(os.path.join(data_dir, 'train_all')))
embedding_net = ft_net(class_num)
model = SiameseNet(embedding_net)
if use_gpu:
    model.cuda()

model = load_whole_network(model, name,
                           opt.which_epoch + '_' + str(opt.net_loss_model))
model = model.eval()
if use_gpu:
    model = model.cuda()

# Extract feature
dataset_feature = []
with torch.no_grad():
    for i in range(len(dataset_list)):
        dataset_feature.append(
            extract_feature(model, dataloaders[dataset_list[i]]))
Пример #24
0
        camera_id.append(int(camera[0]))
        files.append(filename)
    return camera_id, labels, files


gallery_path = image_datasets['gallery'].imgs
query_path = image_datasets['query'].imgs

gallery_cam, gallery_label, gallery_files = get_id(gallery_path)
query_cam, query_label, query_files = get_id(query_path)
######################################################################
# Load Collected data Trained model
print('-------test-----------')
if opt.use_dense:
    embedding_net = ft_net_dense()
    model_structure = SiameseNet(embedding_net)
else:
    model_structure = ft_net(751)
# model = load_network(model_structure)
model = load_network_easy(model_structure)

model.bn = nn.Sequential()
model.fc = nn.Sequential()
model.classifier = nn.Sequential()

# Change to test mode
model = model.eval()
if use_gpu:
    model = model.cuda()

# Extract feature
Пример #25
0
def main():
    ckpt_dir = './ckpt/exp_1/'
    model = SiameseNet()
    model.cuda()
    load_checkpoint(model, ckpt_dir, best=False)
Пример #26
0
 gflags.DEFINE_bool   ("retrain", True, "use cuda")
 gflags.DEFINE_string ("retrain_path", "path-to-retrain-model", 'path retrain')
 Flags(sys.argv)
 #############################################
 trainSet    = Dataset(Flags.train_path,Flags.test_path,Flags.valid_path,Flags.max_iter_train,"train")
 trainLoader = DataLoader(trainSet, batch_size=Flags.batch_size, shuffle=False, num_workers=Flags.workers)
 #############################################
 validSet    = Dataset(Flags.valid_path,Flags.test_path,Flags.valid_path,Flags.max_iter_valid,"valid")
 validLoader = DataLoader(validSet, batch_size=Flags.batch_size, shuffle=False, num_workers=Flags.workers)
 #############################################
 loss_MSE    = torch.nn.MSELoss()
 if Flags.retrain:
     print("\n ... Retrain model")
     net     = loadModel(Flags.retrain_path)
 else:
     net     = SiameseNet()
 #############################################
 save_path   = os.path.join(Flags.save_folder,"save_data")
 model_path  = os.path.join(save_path,"models")
 #############################################
 makeFolder(save_path)
 makeFolder(model_path)
 # multi gpu
 if Flags.cuda:
     os.environ["CUDA_VISIBLE_DEVICES"] = Flags.gpu_ids
     if len(Flags.gpu_ids.split(",")) > 1:
         net = torch.nn.DataParallel(net)
     net.cuda()
 optimizer        = torch.optim.SGD(net.parameters(),lr = Flags.lr, momentum=0.9, nesterov=True)
 sensitivity_list = []
 loss_list        = [] 
Пример #27
0
def train(config):
    np.random.seed(2019)
    tf.random.set_seed(2019)

    # Cteate model's folder
    model_dir = config['model_dir']
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    # Create log's folder
    log_dir = config['train_log_dir']
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    log_name = f"SiameseNet_{datetime.datetime.now():%Y_%m_%d-%H:%M}.log"
    log_name = os.path.join(log_dir, log_name)
    print(f"\033[1;32mAll Infomations can be found in {log_name}\033[0m")

    # Initialize data loader
    data_dir = config['dataset_path']
    train_dataset = DataSet(mode='train', batch_size=config['train_batch_size'])
    val_dataset = DataSet(mode='val', batch_size=config['eval_batch_size'])

    train_engine = TrainEngine.TranEngine()

    # Training options
    # Build model and load pretrained weights
    model = SiameseNet.SiameseNet()
    if config['checkpoint'] is not None:
        model.load_weights(config['checkpoint'])

    lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate=config['learning_rate'],
        decay_steps=5000,
        decay_rate=0.9,
    )
    optimizer = tf.keras.optimizers.Adagrad(learning_rate=lr_schedule)

    # Metrics to gather results
    train_loss = tf.metrics.Mean(name='train_loss')
    train_acc = tf.metrics.Mean(name='train_acc')
    val_loss = tf.metrics.Mean(name='val_loss')
    val_acc = tf.metrics.Mean(name='val_acc')

    # Summary writers
    current_time = datetime.datetime.now().strftime('%Y_%m_%d-%H:%M:%S')
    train_summary_writer = tf.summary.create_file_writer(config['tensorboard_dir'])

    def loss(img1, img2, label):
        return model(img1, img2, label)

    # Forward and upgrade gradients
    def train_step(state):
        img1, img2, labels = next(state['train_dataset'])
        with tf.GradientTape() as tape:
            loss, label_predict, acc = model(img1, img2, labels)

        gradient = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradient, model.trainable_variables))

        # show_result(img1, img2, labels)
        # print(f"\033[1;32mLoss: {loss.numpy()} | Label: {labels.numpy()} | Prediction: {label_predict.numpy()} | Acc: {acc.numpy()}\033[0m")

        train_loss(loss)
        train_acc(acc)

        # if state['total_steps'] % 100 ==0:
        #     logging.info(f"Step: {state['total_steps']} | Loss: {loss.numpy()} | Loss-avg: {train_loss.result().numpy()}")

    def val_step(state):
        img1, img2, labels = next(state['val_dataset'])
        # print(type(img1))
        loss,_ , acc = model(img1, img2, labels)
        loss = tf.reduce_mean(loss)
        acc = tf.reduce_mean(acc)
        val_loss(loss)
        val_acc(acc)


    def start(state):
        logging.info("\033[1;31m************** Start Training **************\033[0m")

    def end(state):
        logging.info("\033[1;31m************** End Training **************\033[0m")


    def end_epoch(state):
        epoch = state['current_epoch'] + 1

        val_step(state)

        logging.info(f"\033[1;32m************** End Epoch {epoch} **************\033[0m")
        template = 'Epoch {} | Loss: {:.6f} | Accuracy: {:.3%} | ' \
                   'Val Loss: {:.6f} | Val Accuracy: {:.3%}'
        logging.info(template.format(epoch, train_loss.result(),
                                     train_acc.result(),
                                     val_loss.result(),
                                     val_acc.result()))
        current_loss = val_loss.result().numpy()
        if current_loss < state['best_val_loss']:
            logging.info("\033[1;32m************** Saving the best model with loss: "
                         "{:.6f} **************\033[0m".format(current_loss))
            state['best_val_loss'] = current_loss
            # model.save(save_dir=config['model_dir'], model=model)
            model.save_weights(os.path.join(config['model_dir'], 'my_model'), overwrite=True)

        #TODO: Early stopping
        with train_summary_writer.as_default():
            tf.summary.scalar('loss', train_loss.result(), step=epoch*config['step_per_epoch'])
            tf.summary.scalar('accuracy', train_acc.result(), step=epoch*config['step_per_epoch'])

        # Reset metrics
        train_loss.reset_states()
        train_acc.reset_states()
        val_loss.reset_states()
        val_acc.reset_states()


    train_engine.hooks['start'] = start
    train_engine.hooks['end'] = end
    train_engine.hooks['end_epoch'] = end_epoch
    train_engine.hooks['train_step'] = train_step

    time_start = time.time()
    # with tf.device('/gpu:0'):
    train_engine.train(loss_func=loss,
                       train_dataset=train_dataset,
                       val_dataset=val_dataset,
                       epochs=config['epochs'],
                       step_per_epoch=config['step_per_epoch'])

    time_end = time.time()
    total_time = time_end - time_start
    h, m, s = total_time//3600, total_time%3600//60, total_time%3600%60
    logging.info(f"\033[1;31m************** Totally used {h}hour {m}minute {s}second **************\033[0m")
    copyfile(real_log, log_name)
Пример #28
0
                                 [VAL_SPLIT_SIZE, TEST_SPLIT_SIZE])

vdl = DataLoader(val_set,
                 batch_size=VALIDATE_BATCH_SIZE,
                 collate_fn=collate_fn)
tdl = DataLoader(test_set, batch_size=TEST_BATCH_SIZE, collate_fn=collate_fn)

VOCAB_SIZE = len(vocab) + 1
EMB_DIM = 100
HIDDEN_SIZE = 128

LR = 0.001
N_EPOCH = 10

print("Creating network")
net = SiameseNet(VOCAB_SIZE, EMB_DIM, HIDDEN_SIZE)

opt = optim.Adam(net.parameters(), lr=LR)

net = net.cuda()

sim = nn.CosineSimilarity()
print(net)
print("Running training loop")
cost_book = []
val_acc_book = []
for j in range(N_EPOCH):
    cost = 0
    pbar = tqdm(dl)
    for i, b in enumerate(pbar):
        opt.zero_grad()
Пример #29
0
stage_1 = False
stage_2 = True
stage_3 = False

if stage_0:
    print('train_model_siamese_with_two_model structure')
    print(model)
    print(model_verif)
    # train_model = train_model_triplet
    train_model = train_model_siamese_with_two_model
    model = train_model(model, model_verif, criterion, optimizer_ft, exp_lr_scheduler,
                        num_epochs=60)

if stage_1:
    embedding_net = ft_net_dense(len(class_names))
    model_siamese = SiameseNet(embedding_net)
    if use_gpu:
        model_siamese.cuda()
    print('model_siamese structure')
    # print(model_siamese)

    # stage_1_classifier_id = list(map(id, model_siamese.embedding_net.classifier.parameters())) \
    #                         + list(map(id, model_siamese.embedding_net.model.fc.parameters())) \
    #                         + list(map(id, model_siamese.classifier.parameters()))
    # stage_1_classifier_params = filter(lambda p: id(p) in stage_1_classifier_id, model_siamese.parameters())
    # stage_1_base_params = filter(lambda p: id(p) not in stage_1_classifier_id, model_siamese.parameters())

    # This manner's effect is worse than SGD
    # optimizer_ft = optim.Adam([
    #     {'params': stage_1_base_params, 'lr': 0.1 * opt.lr},
    #     {'params': stage_1_classifier_params, 'lr': 1 * opt.lr},
Пример #30
0
    return model


######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# It should take around 1-2 hours on GPU.
#
dir_name = os.path.join('./model', name)
if not os.path.exists('model'):
    os.mkdir('model')

print('class_num = %d' % (class_num))
embedding_net = ft_net(class_num)
model = SiameseNet(embedding_net)
if use_gpu:
    model.cuda()

# print('model structure')
# print(model)

criterion_contrastive = ContrastiveLoss()
criterion_verify = nn.CrossEntropyLoss()

classifier_id = list(map(id, model.embedding_net.classifier.parameters())) \
                + list(map(id, model.classifier.parameters()))
classifier_params = filter(lambda p: id(p) in classifier_id,
                           model.parameters())
base_params = filter(lambda p: id(p) not in classifier_id, model.parameters())