Пример #1
0
def main():
    global plotter
    plotter = VisdomLinePlotter(env_name=config.visdom_name)

    # instantiate model and initialize weights
    model = SiameseNetwork()
    if config.cuda:
        model.cuda()

    optimizer = create_optimizer(model, config.lr)

    # optionally resume from a checkpoint
    if config.resume:
        if os.path.isfile(config.resume):
            print('=> loading checkpoint {}'.format(config.resume))
            checkpoint = torch.load(config.resume)
            config.start_epoch = checkpoint['epoch']
            checkpoint = torch.load(config.resume)
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print('=> no checkpoint found at {}'.format(config.resume))

    start = config.start_epoch
    end = start + config.epochs

    for epoch in range(start, end):
        train(train_loader, model, optimizer, epoch)
Пример #2
0
    model_name = config.model_name
    prediction_file = config.prediction_file
    best_prediction_file = config.best_prediction_file  #DBY
    batch = config.batch
    mode = config.mode

    # create model
    model = SiameseNetwork()
    #model = SiameseEfficientNet()
    model = Vgg19()

    if mode == 'test':
        load_model(model_name, model)

    if cuda:
        model = model.cuda()

    # Define 'best loss' - DBY
    best_loss = 0.1
    last_loss = 0
    if mode == 'train':
        # define loss function
        # loss_fn = nn.CrossEntropyLoss()
        # if cuda:
        #     loss_fn = loss_fn.cuda()
        class ContrastiveLoss(torch.nn.Module):
            """
            Contrastive loss function.
            Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
            """
            def __init__(self, margin=2.0):