def train(args): origin = (0,0) reference_point = (0,1) validation_dataset_executed = False prefix = '' # prefix = '' f_prefix = args.data_dir # if args.drive is True: # prefix='drive/semester_project/social_lstm_final/' # f_prefix = 'drive/semester_project/social_lstm_final' print('data_dir:', args.data_dir) # if not os.path.isdir("log/"): # print("Directory creation script is running...") # subprocess.call(['make_directories.sh']) args.freq_validation = np.clip(args.freq_validation, 0, args.num_epochs) validation_epoch_list = list(range(args.freq_validation, args.num_epochs+1, args.freq_validation)) validation_epoch_list[-1]-=1 # Create the data loader object. This object would preprocess the data in terms of # batches each of size args.batch_size, of length args.seq_length dataloader = DataLoader(f_prefix, args.batch_size, args.seq_length, args.num_validation, forcePreProcess=True) model_name = "LSTM" method_name = "SOCIALLSTM" save_tar_name = method_name+"_lstm_model_" if args.gru: model_name = "GRU" save_tar_name = method_name+"_gru_model_" # Log directory log_directory = os.path.join(prefix, 'log/') plot_directory = os.path.join(prefix, 'plot/', method_name, model_name) plot_train_file_directory = 'validation' # Logging files log_file_curve = open(os.path.join(log_directory, method_name, model_name,'log_curve.txt'), 'w+') log_file = open(os.path.join(log_directory, method_name, model_name, 'val.txt'), 'w+') # model directory save_directory = os.path.join(prefix, 'model/') # Save the arguments int the config file import json with open(os.path.join(save_directory, method_name, model_name,'config.pkl'), 'wb') as f: args_dict = vars(args) pickle.dump(args, f) # Path to store the checkpoint file def checkpoint_path(x): return os.path.join(save_directory, method_name, model_name, save_tar_name+str(x)+'.tar') # model creation net = SocialModel(args) if args.use_cuda: net = net.cuda() #optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate) optimizer = torch.optim.Adagrad(net.parameters(), weight_decay=args.lambda_param) #optimizer = torch.optim.Adam(net.parameters(), weight_decay=args.lambda_param) learning_rate = args.learning_rate best_val_loss = 100 best_val_data_loss = 100 smallest_err_val = 100000 smallest_err_val_data = 100000 best_epoch_val = 0 best_epoch_val_data = 0 best_err_epoch_val = 0 best_err_epoch_val_data = 0 all_epoch_results = [] grids = [] num_batch = 0 dataset_pointer_ins_grid = -1 [grids.append([]) for dataset in range(dataloader.get_len_of_dataset())] # Training for epoch in range(args.num_epochs): print('****************Training epoch beginning******************') if dataloader.additional_validation and (epoch-1) in validation_epoch_list: dataloader.switch_to_dataset_type(True) dataloader.reset_batch_pointer(valid=False) loss_epoch = 0 # For each batch for batch in range(dataloader.num_batches): start = time.time() # Get batch data x, y, d , numPedsList, PedsList ,target_ids= dataloader.next_batch() loss_batch = 0 #if we are in a new dataset, zero the counter of batch if dataset_pointer_ins_grid is not dataloader.dataset_pointer and epoch is not 0: num_batch = 0 dataset_pointer_ins_grid = dataloader.dataset_pointer # For each sequence for sequence in range(dataloader.batch_size): # Get the data corresponding to the current sequence x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence] target_id = target_ids[sequence] #get processing file name and then get dimensions of file folder_name = dataloader.get_directory_name_with_pointer(d_seq) dataset_data = dataloader.get_dataset_dimension(folder_name) #dense vector creation x_seq, lookup_seq = dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq) target_id_values = x_seq[0][lookup_seq[target_id], 0:2] #grid mask calculation and storage depending on grid parameter if(args.grid): if(epoch is 0): grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq,args.neighborhood_size, args.grid_size, args.use_cuda) grids[dataloader.dataset_pointer].append(grid_seq) else: grid_seq = grids[dataloader.dataset_pointer][(num_batch*dataloader.batch_size)+sequence] else: grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq,args.neighborhood_size, args.grid_size, args.use_cuda) # vectorize trajectories in sequence if args.use_cuda: x_seq = x_seq.cuda() x_seq, _ = vectorize_seq(x_seq, PedsList_seq, lookup_seq) # <---------------------- Experimental block -----------------------> # Main approach: # 1) Translate all trajectories using first frame value of target trajectory so that target trajectory will start (0,0). # 2) Get angle between first trajectory point of target ped and (0, 1) for turning. # 3) Rotate all trajectories in the sequence using this angle. # 4) Calculate grid mask for hidden layer pooling. # 5) Vectorize all trajectories (substract first frame values of each trajectories from subsequent points in the trajectory). # # Problem: # Low accuracy # # Possible causes: # *Each function has been already checked -> low possibility. # *Logic errors or algorithm errors -> high possibility. # *Wrong order of execution each step -> high possibility. # <------------------------------------------------------------------------> # x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values) # angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy())) # x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq) # if(args.grid): # if(epoch is 0): # grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq,args.neighborhood_size, args.grid_size, args.use_cuda) # grids[dataloader.dataset_pointer].append(grid_seq) # else: # #grid_seq1 = getSequenceGridMask(x_seq, dataset_data, PedsList_seq,args.neighborhood_size, args.grid_size, args.use_cuda) # grid_seq = grids[dataloader.dataset_pointer][(num_batch*dataloader.batch_size)+sequence] # #print([ torch.equal(x.data, y.data) for (x,y) in zip(grid_seq1, grid_seq)]) # #if not (all([ torch.equal(x.data, y.data) for (x,y) in zip(grid_seq1, grid_seq)])): # # print("not equal") # # quit() # else: # grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq,args.neighborhood_size, args.grid_size, args.use_cuda) # x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq) #print(grid_seq) # Construct variables #print("target id : ", target_id) #print("look up : ", lookup_seq) #print("pedlist_seq: ", PedsList_seq) #print("before_xseq: ", x_seq) #x_seq, target_id_values, first_values_dict = vectorize_seq_with_ped(x_seq, PedsList_seq, lookup_seq ,target_id) #print("after_vectorize_seq: ", x_seq) #print("angle: ", np.rad2deg(angle)) #print("after_xseq: ", x_seq) #x_seq = rotate_traj_with_target_ped(x_seq, -angle, PedsList_seq, lookup_seq) #x_seq = revert_seq(x_seq, PedsList_seq, lookup_seq, first_values_dict) #number of peds in this sequence per frame numNodes = len(lookup_seq) hidden_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: hidden_states = hidden_states.cuda() cell_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: cell_states = cell_states.cuda() # Zero out gradients net.zero_grad() optimizer.zero_grad() # Forward prop outputs, _, _ = net(x_seq, grid_seq, hidden_states, cell_states, PedsList_seq,numPedsList_seq ,dataloader, lookup_seq) # Compute loss loss = Gaussian2DLikelihood(outputs, x_seq, PedsList_seq, lookup_seq) loss_batch += loss.item() # Compute gradients loss.backward() # Clip gradients torch.nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip) # Update parameters optimizer.step() end = time.time() loss_batch = loss_batch / dataloader.batch_size loss_epoch += loss_batch num_batch+=1 print('{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.format(epoch * dataloader.num_batches + batch, args.num_epochs * dataloader.num_batches, epoch, loss_batch, end - start)) loss_epoch /= dataloader.num_batches # Log loss values log_file_curve.write("Training epoch: "+str(epoch)+" loss: "+str(loss_epoch)+'\n') if dataloader.valid_num_batches > 0: print('****************Validation epoch beginning******************') # Validation dataloader.reset_batch_pointer(valid=True) loss_epoch = 0 err_epoch = 0 # For each batch for batch in range(dataloader.valid_num_batches): # Get batch data x, y, d , numPedsList, PedsList ,target_ids= dataloader.next_valid_batch() # Loss for this batch loss_batch = 0 err_batch = 0 # For each sequence for sequence in range(dataloader.batch_size): # Get data corresponding to the current sequence x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence] target_id = target_ids[sequence] #get processing file name and then get dimensions of file folder_name = dataloader.get_directory_name_with_pointer(d_seq) dataset_data = dataloader.get_dataset_dimension(folder_name) #dense vector creation x_seq, lookup_seq = dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq) target_id_values = x_seq[0][lookup_seq[target_id], 0:2] #get grid mask grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) if args.use_cuda: x_seq = x_seq.cuda() x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq) # <---------------------- Experimental block -----------------------> # x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values) # angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy())) # x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq) # grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) # x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq) #number of peds in this sequence per frame numNodes = len(lookup_seq) hidden_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: hidden_states = hidden_states.cuda() cell_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: cell_states = cell_states.cuda() # Forward prop outputs, _, _ = net(x_seq[:-1], grid_seq[:-1], hidden_states, cell_states, PedsList_seq[:-1], numPedsList_seq , dataloader, lookup_seq) # Compute loss loss = Gaussian2DLikelihood(outputs, x_seq[1:], PedsList_seq[1:], lookup_seq) # Extract the mean, std and corr of the bivariate Gaussian mux, muy, sx, sy, corr = getCoef(outputs) # Sample from the bivariate Gaussian next_x, next_y = sample_gaussian_2d(mux.data, muy.data, sx.data, sy.data, corr.data, PedsList_seq[-1], lookup_seq) next_vals = torch.FloatTensor(1,numNodes,2) next_vals[:,:,0] = next_x next_vals[:,:,1] = next_y err = get_mean_error(next_vals, x_seq[-1].data[None, : ,:], [PedsList_seq[-1]], [PedsList_seq[-1]], args.use_cuda, lookup_seq) loss_batch += loss.item() err_batch += err loss_batch = loss_batch / dataloader.batch_size err_batch = err_batch / dataloader.batch_size loss_epoch += loss_batch err_epoch += err_batch if dataloader.valid_num_batches != 0: loss_epoch = loss_epoch / dataloader.valid_num_batches err_epoch = err_epoch / dataloader.num_batches # Update best validation loss until now if loss_epoch < best_val_loss: best_val_loss = loss_epoch best_epoch_val = epoch if err_epoch<smallest_err_val: smallest_err_val = err_epoch best_err_epoch_val = epoch print('(epoch {}), valid_loss = {:.3f}, valid_err = {:.3f}'.format(epoch, loss_epoch, err_epoch)) print('Best epoch', best_epoch_val, 'Best validation loss', best_val_loss, 'Best error epoch',best_err_epoch_val, 'Best error', smallest_err_val) log_file_curve.write("Validation epoch: "+str(epoch)+" loss: "+str(loss_epoch)+" err: "+str(err_epoch)+'\n') # Validation dataset if dataloader.additional_validation and (epoch) in validation_epoch_list: dataloader.switch_to_dataset_type() print('****************Validation with dataset epoch beginning******************') dataloader.reset_batch_pointer(valid=False) dataset_pointer_ins = dataloader.dataset_pointer validation_dataset_executed = True loss_epoch = 0 err_epoch = 0 f_err_epoch = 0 num_of_batch = 0 smallest_err = 100000 #results of one epoch for all validation datasets epoch_result = [] #results of one validation dataset results = [] # For each batch for batch in range(dataloader.num_batches): # Get batch data x, y, d , numPedsList, PedsList ,target_ids = dataloader.next_batch() if dataset_pointer_ins is not dataloader.dataset_pointer: if dataloader.dataset_pointer is not 0: print('Finished prosessed file : ', dataloader.get_file_name(-1),' Avarage error : ', err_epoch/num_of_batch) num_of_batch = 0 epoch_result.append(results) dataset_pointer_ins = dataloader.dataset_pointer results = [] # Loss for this batch loss_batch = 0 err_batch = 0 f_err_batch = 0 # For each sequence for sequence in range(dataloader.batch_size): # Get data corresponding to the current sequence x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence] target_id = target_ids[sequence] #get processing file name and then get dimensions of file folder_name = dataloader.get_directory_name_with_pointer(d_seq) dataset_data = dataloader.get_dataset_dimension(folder_name) #dense vector creation x_seq, lookup_seq = dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq) #will be used for error calculation orig_x_seq = x_seq.clone() target_id_values = orig_x_seq[0][lookup_seq[target_id], 0:2] #grid mask calculation grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) #vectorize datapoints if args.use_cuda: x_seq = x_seq.cuda() x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq) # <---------------------- Experimental block -----------------------> # x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values) # angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy())) # x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq) # grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) # x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq) if args.use_cuda: x_seq = x_seq.cuda() #sample predicted points from model ret_x_seq, loss = sample_validation_data(x_seq, PedsList_seq, grid_seq, args, net, lookup_seq, numPedsList_seq, dataloader) #revert the points back to original space ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict) # <---------------------- Experimental block revert-----------------------> # Revert the calculated coordinates back to original space: # 1) Convert point from vectors to absolute coordinates # 2) Rotate all trajectories in reverse angle # 3) Translate all trajectories back to original space by adding the first frame value of target ped trajectory # *It works without problems which mean that it reverts a trajectory back completely # Possible problems: # *Algoritmical errors caused by first experimental block -> High possiblity # <------------------------------------------------------------------------> # ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict) # ret_x_seq = rotate_traj_with_target_ped(ret_x_seq, -angle, PedsList_seq, lookup_seq) # ret_x_seq = translate(ret_x_seq, PedsList_seq, lookup_seq ,-target_id_values) #get mean and final error err = get_mean_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, args.use_cuda, lookup_seq) f_err = get_final_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, args.use_cuda, lookup_seq) loss_batch += loss.item() err_batch += err f_err_batch += f_err print('Current file : ', dataloader.get_file_name(0),' Batch : ', batch+1, ' Sequence: ', sequence+1, ' Sequence mean error: ', err,' Sequence final error: ',f_err,' time: ', end - start) results.append((orig_x_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy(), PedsList_seq, lookup_seq, dataloader.get_frame_sequence(args.seq_length), target_id)) loss_batch = loss_batch / dataloader.batch_size err_batch = err_batch / dataloader.batch_size f_err_batch = f_err_batch / dataloader.batch_size num_of_batch += 1 loss_epoch += loss_batch err_epoch += err_batch f_err_epoch += f_err_batch epoch_result.append(results) all_epoch_results.append(epoch_result) if dataloader.num_batches != 0: loss_epoch = loss_epoch / dataloader.num_batches err_epoch = err_epoch / dataloader.num_batches f_err_epoch = f_err_epoch / dataloader.num_batches avarage_err = (err_epoch + f_err_epoch)/2 # Update best validation loss until now if loss_epoch < best_val_data_loss: best_val_data_loss = loss_epoch best_epoch_val_data = epoch if avarage_err<smallest_err_val_data: smallest_err_val_data = avarage_err best_err_epoch_val_data = epoch print('(epoch {}), valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}'.format(epoch, loss_epoch, err_epoch, f_err_epoch)) print('Best epoch', best_epoch_val_data, 'Best validation loss', best_val_data_loss, 'Best error epoch',best_err_epoch_val_data, 'Best error', smallest_err_val_data) log_file_curve.write("Validation dataset epoch: "+str(epoch)+" loss: "+str(loss_epoch)+" mean_err: "+str(err_epoch)+'final_err: '+str(f_err_epoch)+'\n') optimizer = time_lr_scheduler(optimizer, epoch, lr_decay_epoch = args.freq_optimizer) # Save the model after each epoch print('Saving model') torch.save({ 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, checkpoint_path(epoch)) if dataloader.valid_num_batches != 0: print('Best epoch', best_epoch_val, 'Best validation Loss', best_val_loss, 'Best error epoch',best_err_epoch_val, 'Best error', smallest_err_val) # Log the best epoch and best validation loss log_file.write('Validation Best epoch:'+str(best_epoch_val)+','+' Best validation Loss: '+str(best_val_loss)) if dataloader.additional_validation: print('Best epoch acording to validation dataset', best_epoch_val_data, 'Best validation Loss', best_val_data_loss, 'Best error epoch',best_err_epoch_val_data, 'Best error', smallest_err_val_data) log_file.write("Validation dataset Best epoch: "+str(best_epoch_val_data)+','+' Best validation Loss: '+str(best_val_data_loss)+'\n') #dataloader.write_to_plot_file(all_epoch_results[best_epoch_val_data], plot_directory) #elif dataloader.valid_num_batches != 0: # dataloader.write_to_plot_file(all_epoch_results[best_epoch_val], plot_directory) #else: if validation_dataset_executed: dataloader.switch_to_dataset_type(load_data=False) create_directories(plot_directory, [plot_train_file_directory]) dataloader.write_to_plot_file(all_epoch_results[len(all_epoch_results)-1], os.path.join(plot_directory, plot_train_file_directory)) # Close logging files log_file.close() log_file_curve.close()
def train(args): origin = (0, 0) reference_point = (0, 1) validation_dataset_executed = False # 这一片是否可以去掉 prefix = '' f_prefix = '.' if args.drive is True: prefix = 'drive/semester_project/social_lstm_final/' f_prefix = 'drive/semester_project/social_lstm_final' # 用于从云端读取数据 if not os.path.isdir("log/"): print("Directory creation script is running...") subprocess.call([f_prefix + '/make_directories.sh']) args.freq_validation = np.clip(args.freq_validation, 0, args.num_epochs) validation_epoch_list = list( range(args.freq_validation, args.num_epochs + 1, args.freq_validation)) validation_epoch_list[-1] -= 1 # Create the data loader object. This object would preprocess the data in terms of # batches each of size args.batch_size, of length args.seq_length # 读取数据 dataloader = DataLoader(f_prefix, args.batch_size, args.seq_length, args.num_validation, forcePreProcess=True) model_name = "LSTM" method_name = "SOCIALLSTM" save_tar_name = method_name + "_lstm_model_" if args.gru: model_name = "GRU" save_tar_name = method_name + "_gru_model_" # Log directory log_directory = os.path.join(prefix, 'log/') plot_directory = os.path.join(prefix, 'plot/', method_name, model_name) # print(plot_directory) plot_train_file_directory = 'validation' # Logging files log_file_curve = open( os.path.join(log_directory, method_name, model_name, 'log_curve.txt'), 'w+') log_file = open( os.path.join(log_directory, method_name, model_name, 'val.txt'), 'w+') # model directory save_directory = os.path.join(prefix, 'model/') # Save the arguments int the config file # 将参数保存在配置文件中 with open( os.path.join(save_directory, method_name, model_name, 'config.pkl'), 'wb') as f: pickle.dump(args, f) # Path to store the checkpoint file # 存储检查点文件的路径 def checkpoint_path(x): return os.path.join(save_directory, method_name, model_name, save_tar_name + str(x) + '.tar') # model creation net = SocialModel(args) if args.use_cuda: net = net.cuda() optimizer = torch.optim.Adagrad(net.parameters(), weight_decay=args.lambda_param) learning_rate = args.learning_rate best_val_loss = 100 best_val_data_loss = 100 smallest_err_val = 100000 smallest_err_val_data = 100000 best_epoch_val = 0 best_epoch_val_data = 0 best_err_epoch_val = 0 best_err_epoch_val_data = 0 all_epoch_results = [] grids = [] num_batch = 0 dataset_pointer_ins_grid = -1 [grids.append([]) for dataset in range(dataloader.get_len_of_dataset())] # Training for epoch in range(args.num_epochs): print('****************Training epoch beginning******************') if dataloader.additional_validation and (epoch - 1) in validation_epoch_list: dataloader.switch_to_dataset_type(True) dataloader.reset_batch_pointer(valid=False) loss_epoch = 0 # For each batch for batch in range(dataloader.num_batches): start = time.time() # Get batch data x, y, d, numPedsList, PedsList, target_ids = dataloader.next_batch( ) loss_batch = 0 # 如果我们在新数据集中,则将批处理计数器清零 if dataset_pointer_ins_grid is not dataloader.dataset_pointer and epoch is not 0: num_batch = 0 dataset_pointer_ins_grid = dataloader.dataset_pointer # For each sequence for sequence in range(dataloader.batch_size): # 获取与当前序列相对应的数据 x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[ sequence], y[sequence], d[sequence], numPedsList[ sequence], PedsList[sequence] target_id = target_ids[sequence] # 获取处理文件名,然后获取文件尺寸 folder_name = dataloader.get_directory_name_with_pointer(d_seq) dataset_data = dataloader.get_dataset_dimension(folder_name) # dense vector creation # 密集矢量创建 x_seq, lookup_seq = dataloader.convert_proper_array( x_seq, numPedsList_seq, PedsList_seq) target_id_values = x_seq[0][lookup_seq[target_id], 0:2] # grid mask calculation and storage depending on grid parameter # 网格掩码的计算和存储取决于网格参数 # 应该是用于判断是否有social性 if (args.grid): if (epoch is 0): grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) grids[dataloader.dataset_pointer].append(grid_seq) else: temp = (num_batch * dataloader.batch_size) + sequence if temp > 128: temp = 128 grid_seq = grids[dataloader.dataset_pointer][temp] else: grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) # 按顺序矢量化轨迹 x_seq, _ = vectorize_seq(x_seq, PedsList_seq, lookup_seq) if args.use_cuda: x_seq = x_seq.cuda() # number of peds in this sequence per frame # 每帧此序列中的ped数 numNodes = len(lookup_seq) hidden_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: hidden_states = hidden_states.cuda() cell_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: cell_states = cell_states.cuda() # 零梯度 net.zero_grad() optimizer.zero_grad() # Forward prop outputs, _, _ = net(x_seq, grid_seq, hidden_states, cell_states, PedsList_seq, numPedsList_seq, dataloader, lookup_seq) # 计算损失loss loss = Gaussian2DLikelihood(outputs, x_seq, PedsList_seq, lookup_seq) loss_batch += loss.item() # 计算梯度 loss.backward() # 裁剪梯度 torch.nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip) # 更新梯度 optimizer.step() end = time.time() loss_batch = loss_batch / dataloader.batch_size loss_epoch += loss_batch num_batch += 1 print('{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'. format(epoch * dataloader.num_batches + batch, args.num_epochs * dataloader.num_batches, epoch, loss_batch, end - start)) loss_epoch /= dataloader.num_batches # 记录loss log_file_curve.write("Training epoch: " + str(epoch) + " loss: " + str(loss_epoch) + '\n') if dataloader.valid_num_batches > 0: print( '****************Validation epoch beginning******************') # Validation dataloader.reset_batch_pointer(valid=True) loss_epoch = 0 err_epoch = 0 # 每一个batch for batch in range(dataloader.valid_num_batches): # 获取batch数据 x, y, d, numPedsList, PedsList, target_ids = dataloader.next_valid_batch( ) # batch的损失loss loss_batch = 0 err_batch = 0 # 对于每个序列 for sequence in range(dataloader.batch_size): # 获取与当前序列相对应的数据 x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[ sequence], y[sequence], d[sequence], numPedsList[ sequence], PedsList[sequence] target_id = target_ids[sequence] # 获取处理文件名,然后获取文件尺寸 folder_name = dataloader.get_directory_name_with_pointer( d_seq) dataset_data = dataloader.get_dataset_dimension( folder_name) # 密集矢量创建 x_seq, lookup_seq = dataloader.convert_proper_array( x_seq, numPedsList_seq, PedsList_seq) target_id_values = x_seq[0][lookup_seq[target_id], 0:2] # get grid mask # 应该是用于判断是否有social grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) x_seq, first_values_dict = vectorize_seq( x_seq, PedsList_seq, lookup_seq) if args.use_cuda: x_seq = x_seq.cuda() # number of peds in this sequence per frame numNodes = len(lookup_seq) hidden_states = Variable( torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: hidden_states = hidden_states.cuda() cell_states = Variable(torch.zeros(numNodes, args.rnn_size)) if args.use_cuda: cell_states = cell_states.cuda() # Forward prop outputs, _, _ = net(x_seq[:-1], grid_seq[:-1], hidden_states, cell_states, PedsList_seq[:-1], numPedsList_seq, dataloader, lookup_seq) # 计算损失loss loss = Gaussian2DLikelihood(outputs, x_seq[1:], PedsList_seq[1:], lookup_seq) # 提取二元高斯的均值mean,std标准差和corr相关性 mux, muy, sx, sy, corr = getCoef(outputs) # 来自二元高斯的样本 next_x, next_y = sample_gaussian_2d( mux.data, muy.data, sx.data, sy.data, corr.data, PedsList_seq[-1], lookup_seq) next_vals = torch.FloatTensor(1, numNodes, 2) next_vals[:, :, 0] = next_x next_vals[:, :, 1] = next_y err = get_mean_error(next_vals, x_seq[-1].data[None, :, :], [PedsList_seq[-1]], [PedsList_seq[-1]], args.use_cuda, lookup_seq) loss_batch += loss.item() err_batch += err loss_batch = loss_batch / dataloader.batch_size err_batch = err_batch / dataloader.batch_size loss_epoch += loss_batch err_epoch += err_batch if dataloader.valid_num_batches != 0: loss_epoch = loss_epoch / dataloader.valid_num_batches err_epoch = err_epoch / dataloader.num_batches # 到目前为止更新最佳验证损失loss if loss_epoch < best_val_loss: best_val_loss = loss_epoch best_epoch_val = epoch if err_epoch < smallest_err_val: smallest_err_val = err_epoch best_err_epoch_val = epoch print('(epoch {}), valid_loss = {:.3f}, valid_err = {:.3f}'. format(epoch, loss_epoch, err_epoch)) print('Best epoch', best_epoch_val, 'Best validation loss', best_val_loss, 'Best error epoch', best_err_epoch_val, 'Best error', smallest_err_val) log_file_curve.write("Validation epoch: " + str(epoch) + " loss: " + str(loss_epoch) + " err: " + str(err_epoch) + '\n') # Validation验证数据集 if dataloader.additional_validation and ( epoch) in validation_epoch_list: dataloader.switch_to_dataset_type() print( '****************Validation with dataset epoch beginning******************' ) dataloader.reset_batch_pointer(valid=False) dataset_pointer_ins = dataloader.dataset_pointer validation_dataset_executed = True loss_epoch = 0 err_epoch = 0 f_err_epoch = 0 num_of_batch = 0 smallest_err = 100000 # results of one epoch for all validation datasets # 所有验证数据集的一个时期的结果 epoch_result = [] # results of one validation dataset # 一个验证数据集的结果 results = [] # For each batch for batch in range(dataloader.num_batches): # Get batch data x, y, d, numPedsList, PedsList, target_ids = dataloader.next_batch( ) if dataset_pointer_ins is not dataloader.dataset_pointer: if dataloader.dataset_pointer is not 0: print('Finished prosessed file : ', dataloader.get_file_name(-1), ' Avarage error : ', err_epoch / num_of_batch) num_of_batch = 0 epoch_result.append(results) dataset_pointer_ins = dataloader.dataset_pointer results = [] # Loss for this batch loss_batch = 0 err_batch = 0 f_err_batch = 0 # For each sequence for sequence in range(dataloader.batch_size): # Get data corresponding to the current sequence x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[ sequence], y[sequence], d[sequence], numPedsList[ sequence], PedsList[sequence] target_id = target_ids[sequence] # get processing file name and then get dimensions of file folder_name = dataloader.get_directory_name_with_pointer( d_seq) dataset_data = dataloader.get_dataset_dimension( folder_name) # dense vector creation x_seq, lookup_seq = dataloader.convert_proper_array( x_seq, numPedsList_seq, PedsList_seq) # will be used for error calculation orig_x_seq = x_seq.clone() target_id_values = orig_x_seq[0][lookup_seq[target_id], 0:2] # grid mask calculation grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda) if args.use_cuda: x_seq = x_seq.cuda() orig_x_seq = orig_x_seq.cuda() # 向量化数据点 x_seq, first_values_dict = vectorize_seq( x_seq, PedsList_seq, lookup_seq) # 从模型中抽取预测点 ret_x_seq, loss = sample_validation_data( x_seq, PedsList_seq, grid_seq, args, net, lookup_seq, numPedsList_seq, dataloader) # 将点还原回原始空间 ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict) # get mean and final error err = get_mean_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, args.use_cuda, lookup_seq) f_err = get_final_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, lookup_seq) loss_batch += loss.item() err_batch += err f_err_batch += f_err print('Current file : ', dataloader.get_file_name(0), ' Batch : ', batch + 1, ' Sequence: ', sequence + 1, ' Sequence mean error: ', err, ' Sequence final error: ', f_err, ' time: ', end - start) results.append( (orig_x_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy(), PedsList_seq, lookup_seq, dataloader.get_frame_sequence(args.seq_length), target_id)) loss_batch = loss_batch / dataloader.batch_size err_batch = err_batch / dataloader.batch_size f_err_batch = f_err_batch / dataloader.batch_size num_of_batch += 1 loss_epoch += loss_batch err_epoch += err_batch f_err_epoch += f_err_batch epoch_result.append(results) all_epoch_results.append(epoch_result) if dataloader.num_batches != 0: loss_epoch = loss_epoch / dataloader.num_batches err_epoch = err_epoch / dataloader.num_batches f_err_epoch = f_err_epoch / dataloader.num_batches avarage_err = (err_epoch + f_err_epoch) / 2 # Update best validation loss until now if loss_epoch < best_val_data_loss: best_val_data_loss = loss_epoch best_epoch_val_data = epoch if avarage_err < smallest_err_val_data: smallest_err_val_data = avarage_err best_err_epoch_val_data = epoch print('(epoch {}), valid_loss = {:.3f}, ' 'valid_mean_err = {:.3f}, ' 'valid_final_err = {:.3f}'.format( epoch, loss_epoch, err_epoch, f_err_epoch)) print('Best epoch', best_epoch_val_data, 'Best validation loss', best_val_data_loss, 'Best error epoch', best_err_epoch_val_data, 'Best error', smallest_err_val_data) log_file_curve.write("Validation dataset epoch: " + str(epoch) + " loss: " + str(loss_epoch) + " mean_err: " + str(err_epoch) + 'final_err: ' + str(f_err_epoch) + '\n') optimizer = time_lr_scheduler(optimizer, epoch, lr_decay_epoch=args.freq_optimizer) # Save the model after each epoch print('Saving model') torch.save( { 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, checkpoint_path(epoch)) if dataloader.valid_num_batches != 0: print('Best epoch', best_epoch_val, 'Best validation Loss', best_val_loss, 'Best error epoch', best_err_epoch_val, 'Best error', smallest_err_val) # Log the best epoch and best validation loss log_file.write('Validation Best epoch:' + str(best_epoch_val) + ',' + ' Best validation Loss: ' + str(best_val_loss)) if dataloader.additional_validation: print('Best epoch acording to validation dataset', best_epoch_val_data, 'Best validation Loss', best_val_data_loss, 'Best error epoch', best_err_epoch_val_data, 'Best error', smallest_err_val_data) log_file.write("Validation dataset Best epoch: " + str(best_epoch_val_data) + ',' + ' Best validation Loss: ' + str(best_val_data_loss) + '\n') # FileNotFoundError: [Errno 2] No such file or directory: 'plot/SOCIALLSTM\\LSTM\\validation\\biwi\\biwi_hotel_4.pkl' # validation_dataset_executed = True if validation_dataset_executed: # print("用于绘图的文件开始保存了") dataloader.switch_to_dataset_type(load_data=False) create_directories(plot_directory, [plot_train_file_directory]) # 找不到这个文件,是我手动添加的 # print(all_epoch_results) # print(len(all_epoch_results) - 1) dataloader.write_to_plot_file( all_epoch_results[len(all_epoch_results) - 1], os.path.join(plot_directory, plot_train_file_directory)) # Close logging files log_file.close() log_file_curve.close()