#t = np.arange(0.6,1.0,0.001) angles = np.zeros((len(t),2)) cnt = 0 for i in t: angles[cnt] = np.array([i, 0]) cnt += 1 b_cyl = np.zeros((len(angles),2)) b_dip = np.zeros((len(angles),3)) fingerPos = np.zeros((len(angles),2)) ang = np.zeros((len(angles),)) cnt = 0 startT = time.time() for i in angles: b_cyl[cnt] = modC.angToB_cyl(i,phalMid,sMid,jointMid) cnt += 1 print "time needed: ", time.time()-startT ''' estimation ''' #startT = time.time() #a = modC.estimateAng_cyl([0,0], phalMid, sMid, jointMid, b_cyl[-1]) #print "time needed: ", time.time()-startT #print a.x #print angles[-1] estAng = np.zeros((len(angles),2)) stat = np.zeros((len(angles),2)) tolerance = 1.e-06 cnt = 0 startT = time.time()
angles = np.zeros((len(t),2)) cnt = 0 for i in t: angles[cnt] = np.array([i, 0]) cnt += 1 b_ind = np.zeros((len(angles),2)) b_mid = np.zeros((len(angles),2)) b_rin = np.zeros((len(angles),2)) b_pin = np.zeros((len(angles),2)) cnt = 0 startT = time.time() for i in angles: # b_ind[cnt] = modC.angToB_cyl(i,np.array(phalInd),sInd,jointInd) b_mid[cnt] = modC.angToB_cyl(i+[0,0.5],np.array(phalMid),sMid,jointMid) # b_rin[cnt] = modC.angToB_cyl(i*0.2,np.array(phalRin),sRin,jointRin) # b_pin[cnt] = modC.angToB_cyl(i+[0,i[0]*0.3],np.array(phalPin),sPin,jointPin) cnt += 1 print "time needed simulation: ", time.time()-startT ''' estimation ''' #startT = time.time() #a = modC.estimateAng_cyl([0,0], phalMid, sMid, jointMid, b_cyl[-1]) #print "time needed: ", time.time()-startT #print a.x #print angles[-1] estAng_Ind = np.zeros((len(angles),2)) estAng_Mid = np.zeros((len(angles),2)) estAng_Rin = np.zeros((len(angles),2))
angles = np.zeros((len(t),2*len(sensList))) cnt = 0 for i in t: angles[cnt] = np.array([i, 0., i, 0., i, 0., i, 0.]) cnt += 1 b_dip = np.zeros((len(t),3*len(sensList))) b_cyl = np.zeros((len(t),3*len(sensList))) cnt = 0 for i in angles: b_dip[cnt] = modD.cy.angToBm_cy(i,fingerList,sensList,jointList) b_cyl[cnt] = modC.angToB_cyl(i,fingerList,sensList,jointList) cnt += 1 # caliPos = calcBInd_m[0] (scale, off) = datAc.getScaleOff(b_dip, meas) meas_fit = meas * scale + off plo.plotter2d((b_dip[:,:3], b_dip[:,3:6], b_dip[:,6:9], b_dip[:,9:]), ("dipole index","dipole middle","dipole ring","dipole pinky")) plo.plotter2d((meas_fit[:,:3], meas_fit[:,3:6], meas_fit[:,6:9], meas_fit[:,9:]), ("meas_fit index","meas_fit middle","meas_fit ring","meas_fit pinky")) plo.plotter2d((meas[:,:3], meas[:,3:6], meas[:,6:9], meas[:,9:]), ("meas_raw index","meas_raw middle","meas_raw ring","meas_raw pinky"))
for i in t: angles[cnt] = [i, 0] cnt += 1 #angles = angles[::-1] b_cyl = np.zeros((len(angles),2)) #b_cyl_cy = np.zeros((len(angles),2)) b_dip = np.zeros((len(angles),3)) pos_py = np.zeros((len(angles),2)) pos_cy = np.zeros((len(angles),2)) ang = np.zeros((len(angles),)) cnt = 0 startT = time.time() for i in angles: b_cyl[cnt] = modC.angToB_cyl(i+[0,0.5],np.array(phalMid),np.array(sMid),np.array(jointMid)) # b_cyl_py[cnt] = modC.angToB_cyl(i,phalMid,sMid,jointMid) # b_cyl_py[cnt] = modC.angToB_cyl(i,np.array(phalMid),np.array(sMid),np.array(jointMid),'py') # b_cyl_cy[cnt] = modC.angToB_cyl(i,np.array(phalMid),np.array(sMid),np.array(jointMid),'cy') cnt += 1 print "time needed PY: ", time.time()-startT #d = b_cyl_py-b_cyl_cy #p = modC.cel_bul(1.,1.,1.,1.) #c = modC.cy.cel_bul_cy(1.,1.,1.,1.) #print "python: ", p #print "cython: ", c ''' estimation ''' #startT = time.time()