def train_model(train_dir,
                valid_dir,
                name_optimizer='sgd',
                learning_rate=1.0,
                decay_learning_rate=1e-8,
                all_trainable=False,
                model_weights_path=None,
                no_class=200,
                batch_size=128,
                epoch=20,
                tensorboard_dir=None,
                checkpoint_dir=None):
    '''Train or retrain model.

    Args:
        train_dir: train dataset directory.
        valid_dir: validation dataset directory.
        name_optimizer: optimizer method.
        learning_rate: learning rate.
        decay_learning_rate: learning rate decay.
        model_weights_path: path of keras model weights.
        no_class: number of prediction classes.
        batch_size: batch size.
        epoch: training epoch.

        tensorboard_dir: tensorboard logs directory.
            If None, dismiss it.
        checkpoint_dir: checkpoints directory.
            If None, dismiss it.

    Returns:
        Training history.
    '''

    model_bcnn = buil_bcnn(all_trainable=all_trainable,
                           size_height=244,
                           size_width=244,
                           no_class=no_class,
                           name_optimizer=name_optimizer,
                           learning_rate=learning_rate,
                           decay_learning_rate=decay_learning_rate)

    if model_weights_path:
        model_bcnn.load_weights(model_weights_path)

    # Load data
    train_generator, valid_generator = build_generator(train_dir=train_dir,
                                                       valid_dir=valid_dir,
                                                       batch_size=batch_size)

    # Callbacks
    callbacks = []
    if tensorboard_dir:
        cb_tersoboard = TensorBoard(log_dir=tensorboard_dir,
                                    histogram_freq=0,
                                    batch_size=batch_size,
                                    write_graph=False)
        callbacks.append(cb_tersoboard)

    if checkpoint_dir:
        cb_checkpoint = ModelCheckpoint(os.path.join(
            checkpoint_dir, 'Xception_model_{epoch:02d}-{val_acc:.3f}.h5'),
                                        save_weights_only=True,
                                        monitor='val_acc',
                                        verbose=True)
        callbacks.append(cb_checkpoint)

    cb_reducer = ReduceLROnPlateau(monitor='val_acc',
                                   factor=0.5,
                                   patience=5,
                                   min_lr=1e-6,
                                   min_delta=1e-3)
    cb_stopper = EarlyStopping(monitor='val_acc',
                               min_delta=1e-3,
                               patience=20,
                               verbose=0,
                               mode='auto')
    callbacks += [cb_reducer, cb_stopper]

    # Train
    history = model_bcnn.fit_generator(train_generator,
                                       steps_per_epoch=100,
                                       epochs=epoch,
                                       validation_data=valid_generator,
                                       validation_steps=50,
                                       callbacks=callbacks)

    model_bcnn.save_weights('./new_model_weights.h5')

    return history
Пример #2
0
def train_model(name_optimizer='sgd',
                learning_rate=0.05,
                decay_learning_rate=1e-9,
                all_trainable=True,
                model_weights_path=None,
                no_class=10,
                batch_size=BACTH_SIZE,
                epoch=300,
                tensorboard_dir=None,
                checkpoint_dir=None):
    '''Train or retrain model.

    Args:
        train_dir: train dataset directory.
        valid_dir: validation dataset directory.
        name_optimizer: optimizer method.
        learning_rate: learning rate.
        decay_learning_rate: learning rate decay.
        model_weights_path: path of keras model weights.
        no_class: number of prediction classes.
        batch_size: batch size.
        epoch: training epoch.

        tensorboard_dir: tensorboard logs directory.
            If None, dismiss it.
        checkpoint_dir: checkpoints directory.
            If None, dismiss it.

    Returns:
        Training history.
    '''

    model = buil_bcnn(all_trainable=all_trainable,
                      no_class=no_class,
                      name_optimizer=name_optimizer,
                      learning_rate=learning_rate,
                      decay_learning_rate=decay_learning_rate,
                      name_activation='softmax',
                      name_loss='categorical_crossentropy')

    if model_weights_path:
        model.load_weights(model_weights_path)

    # Callbacks
    callbacks = []
    if tensorboard_dir:
        cb_tersoboard = TensorBoard(log_dir=tensorboard_dir,
                                    histogram_freq=0,
                                    batch_size=batch_size,
                                    write_graph=False)
        callbacks.append(cb_tersoboard)

    #if checkpoint_dir:
    #cb_checkpoint = ModelCheckpoint(
    #os.path.join(checkpoint_dir, 'model_{epoch:02d}-{val_acc:.3f}.h5'),
    #save_weights_only=True,
    #monitor='val_loss',
    #verbose=True)
    #callbacks.append(cb_checkpoint)

    cb_reducer = ReduceLROnPlateau(monitor='val_loss',
                                   factor=0.5,
                                   patience=5,
                                   min_lr=1e-6,
                                   min_delta=1e-3)
    cb_stopper = EarlyStopping(monitor='val_loss',
                               min_delta=1e-3,
                               patience=10,
                               verbose=0,
                               mode='auto')
    callbacks += [cb_reducer, cb_stopper]

    # Train
    # save best model
    filepath = "./checkpoint/sgd-weights-improvement-{epoch:02d}-{val_acc:.2f}.h5"
    checkpoint = ModelCheckpoint(filepath=filepath,
                                 monitor='val_acc',
                                 verbose=1,
                                 save_best_only='True',
                                 mode='max',
                                 period=1)
    callback_list = [cb_reducer, checkpoint]

    train_generator = generate_batch_data_random(train_data, BACTH_SIZE,
                                                 encoder)
    validation_generator = generate_batch_data_random(validation_data,
                                                      BACTH_SIZE, encoder)

    #loader = DataLoader(datapath=data_dir)

    # use generator
    #datagen = loader.generate(batch_size)
    #iterations = loader.train_size // batch_size
    history = model.fit_generator(train_generator,
                                  validation_data=validation_generator,
                                  epochs=epoch,
                                  steps_per_epoch=split_ratio / batch_size,
                                  validation_steps=(50000 - split_ratio) /
                                  batch_size,
                                  callbacks=callback_list)

    return history
Пример #3
0
test_datagen = ImageDataGenerator(rescale=1. / 255,
                                  samplewise_center=True,
                                  samplewise_std_normalization=True,
                                  rotation_range=100,
                                  width_shift_range=0.1,
                                  height_shift_range=0.1,
                                  shear_range=0.2,
                                  zoom_range=0.2,
                                  horizontal_flip=True,
                                  fill_mode='constant',
                                  cval=0)

print(nbr_augmentation, 'Loading model and weights from training process ...')
model = buil_bcnn(all_trainable=False,
                  no_class=2,
                  name_optimizer='sgd',
                  learning_rate=0.0001,
                  decay_learning_rate=1e-8)
model.load_weights(weights_path)

for idx in range(nbr_augmentation):
    print('{}th augmentation for testing ...'.format(idx))
    random_seed = np.random.random_integers(0, 100000)

    test_generator = test_datagen.flow_from_directory(
        test_data_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        shuffle=False,  # Important !!!
        seed=random_seed,
        classes=None,
Пример #4
0
def train_model(data_dir,
                name_optimizer='sgd',
                learning_rate=1.0,
                decay_learning_rate=1e-8,
                all_trainable=False,
                model_weights_path=None,
                no_class=100,
                batch_size=32,
                epoch=100,
                tensorboard_dir=None,
                checkpoint_dir=None):
    '''Train or retrain model.

    Args:
        train_dir: train dataset directory.
        valid_dir: validation dataset directory.
        name_optimizer: optimizer method.
        learning_rate: learning rate.
        decay_learning_rate: learning rate decay.
        model_weights_path: path of keras model weights.
        no_class: number of prediction classes.
        batch_size: batch size.
        epoch: training epoch.

        tensorboard_dir: tensorboard logs directory.
            If None, dismiss it.
        checkpoint_dir: checkpoints directory.
            If None, dismiss it.

    Returns:
        Training history.
    '''

    model = buil_bcnn(all_trainable=all_trainable,
                      no_class=no_class,
                      name_optimizer=name_optimizer,
                      learning_rate=learning_rate,
                      decay_learning_rate=decay_learning_rate)

    if model_weights_path:
        model.load_weights(model_weights_path)

    # Load data
    #train_generator, valid_generator = build_generator(
    #train_dir=train_dir,
    #valid_dir=valid_dir,
    #batch_size=batch_size)

    # to do: use generator to save memory
    loader = DataLoader(npypath=data_dir)
    trainx, trainy, validx, validy = loader.trainx, loader.trainy, loader.testx, loader.testy

    # Callbacks
    callbacks = []
    if tensorboard_dir:
        cb_tersoboard = TensorBoard(log_dir=tensorboard_dir,
                                    histogram_freq=0,
                                    batch_size=batch_size,
                                    write_graph=False)
        callbacks.append(cb_tersoboard)

    if checkpoint_dir:
        cb_checkpoint = ModelCheckpoint(os.path.join(
            checkpoint_dir, 'model_{epoch:02d}-{val_acc:.3f}.h5'),
                                        save_weights_only=True,
                                        monitor='val_loss',
                                        verbose=True)
        callbacks.append(cb_checkpoint)

    cb_reducer = ReduceLROnPlateau(monitor='val_loss',
                                   factor=0.5,
                                   patience=5,
                                   min_lr=1e-6,
                                   min_delta=1e-3)
    cb_stopper = EarlyStopping(monitor='val_loss',
                               min_delta=1e-3,
                               patience=10,
                               verbose=0,
                               mode='auto')
    callbacks += [cb_reducer, cb_stopper]

    # Train
    #history = model.fit_generator(
    #train_generator,
    #epochs=epoch,
    #validation_data=valid_generator,
    #callbacks=callbacks)

    history = model.fit(trainx,
                        trainy,
                        epochs=epoch,
                        batch_size=batch_size,
                        validation_data=(validx, validy),
                        verbose=1,
                        shuffle=True)

    model.save_weights('./new_model_weights.h5')

    return history