Пример #1
0
def export(model_params, checkpoint_file, config=None):
    # Input data
    batch_size = 1
    im_size = model_params.im_size
    guide_image = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    gb_image = tf.placeholder(tf.float32, [batch_size, im_size[1], im_size[0], 1])
    input_image = tf.placeholder(tf.float32, [batch_size, im_size[1], im_size[0], 3])

    # Create model
    
    model_func = get_model_func(model_params.base_model)
    # split the model into visual modulator and other parts, visual modulator only need to run once
    if model_params.use_visual_modulator:
        if model_params.base_model =='lite':
            v_m_params = visual_modulator_lite(guide_image, model_params, is_training=False)
        else:
            v_m_params = visual_modulator(guide_image, model_params, is_training=False)
    else:
        v_m_params = None
    net, end_points = model_func([guide_image, gb_image, input_image], model_params, visual_modulator_params = v_m_params, is_training=False)
    probabilities = tf.nn.sigmoid(net, name = 'prob')
    global_step = tf.Variable(0, name='global_step', trainable=False)
    rewrite_options = rewriter_config_pb2.RewriterConfig()
    rewrite_options.optimizers.append('pruning')
    rewrite_options.optimizers.append('constfold')
    rewrite_options.optimizers.append('layout')
    graph_options = tf.GraphOptions(
            rewrite_options=rewrite_options, infer_shapes=True)
    config = tf.ConfigProto(
            graph_options=graph_options,
            allow_soft_placement=True,
            )
    output_names = ['prob']
    for i, v_m_param in enumerate(v_m_params):
        visual_mod_name = 'visual_mod_params_%d' % (i+1)
        tf.identity(v_m_param, name = visual_mod_name)
        output_names.append(visual_mod_name)
    # Create a saver to load the network
    saver = tf.train.Saver([v for v in tf.global_variables()]) #if '-up' not in v.name and '-cr' not in v.name])
    save_name = checkpoint_file + '.graph.pb'
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, checkpoint_file)
        if not model_params.base_model == 'lite':
            sess.run(interp_surgery(tf.global_variables()))
        output_graph_def = graph_util.convert_variables_to_constants(
                sess,
                sess.graph_def,
                output_names)
        with open(save_name, 'wb') as writer:
            writer.write(output_graph_def.SerializeToString())
        model_params.output_names = output_names
        with open(save_name+'.json', 'w') as writer:
            json.dump(vars(model_params), writer)
        print('Model saved in', save_name)
Пример #2
0
def test(dataset, model_params, checkpoint_file, result_path, batch_size=1, config=None):
    """Test one sequence
    Args:
    dataset: Reference to a Dataset object instance
    model_params: Model parameters
    checkpoint_path: Path of the checkpoint to use for the evaluation
    result_path: Path to save the output images
    config: Reference to a Configuration object used in the creation of a Session
    Returns:
    """
    if config is None:
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        # config.log_device_placement = True
        config.allow_soft_placement = True
    tf.logging.set_verbosity(tf.logging.INFO)
    assert batch_size==1, "only allow batch size equal to 1 for testing"
    # Input data

    guide_image = tf.placeholder(tf.float32, [batch_size, None, None, 3])
    gb_image = tf.placeholder(tf.float32, [batch_size, None, None, 1])
    input_image = tf.placeholder(tf.float32, [batch_size, None, None, 3])

    # Create model
    
    model_func = get_model_func(model_params.base_model)
    # split the model into visual modulator and other parts, visual modulator only need to run once
    if model_params.use_visual_modulator:
        if model_params.base_model =='lite':
            v_m_params = visual_modulator_lite(guide_image, model_params, is_training=False)
        else:
            v_m_params = visual_modulator(guide_image, model_params, is_training=False)
    else:
        v_m_params = None
    net, end_points = model_func([guide_image, gb_image, input_image], model_params, visual_modulator_params = v_m_params, is_training=False)
    probabilities = tf.nn.sigmoid(net)
    global_step = tf.Variable(0, name='global_step', trainable=False)

    # Create a saver to load the network
    saver = tf.train.Saver([v for v in tf.global_variables()]) #if '-up' not in v.name and '-cr' not in v.name])

    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, checkpoint_file)
        if not model_params.base_model == 'lite':
            sess.run(interp_surgery(tf.global_variables()))
        if not os.path.exists(result_path):
            os.makedirs(result_path)
        print('start testing process')
        time_start = time.time()
        for frame in range(dataset.get_test_size()):
            guide_images, gb_images, images, save_names = dataset.next_batch(batch_size, 'test')
            # create folder for results
            if len(save_names[0].split('/')) > 1:
                save_path = os.path.join(result_path, *(save_names[0].split('/')[:-1]))
                if not os.path.exists(save_path):
                    os.makedirs(save_path)
            if images is None or gb_images is None:
                # first frame of a squence
                if model_params.use_visual_modulator:
                    curr_v_m_params = sess.run(v_m_params, feed_dict={guide_image: guide_images})
                # create a black dummy image for result of the first frame, to be compatible with DAVIS eval toolkit
                scipy.misc.imsave(os.path.join(result_path, save_names[0]), np.zeros(guide_images.shape[1:3]))
            else:
                feed_dict = { gb_image:gb_images, input_image:images}
                if model_params.use_visual_modulator:
                    if model_params.base_model=='lite':
                        for v_m_param, curr_param in zip(v_m_params, curr_v_m_params):
                            feed_dict[v_m_param] = curr_param
                    else:
                        feed_dict[v_m_params] = curr_v_m_params
                res_all = sess.run([probabilities], feed_dict=feed_dict)
                res = res_all[0]
                if model_params.crf_postprocessing:
                    res_np = np.zeros(res.shape[:-1])
                    res_np[0] = dataset.crf_processing(dataset.images[0], (res[0,:,:,0] > 0.5).astype(np.int32))
                else:
                    res_np = res.astype(np.float32)[:, :, :, 0] > 0.5             
                print('Saving ' + os.path.join(result_path, save_names[0]))
                scipy.misc.imsave(os.path.join(result_path, save_names[0]), res_np[0].astype(np.float32))
                curr_score_name = save_names[0][:-4]
                if model_params.save_score:
                    print('Saving ' + os.path.join(result_path, curr_score_name) + '.npy')
                    np.save(os.path.join(result_path, curr_score_name), res.astype(np.float32)[0,:,:,0])
        time_finish = time.time()
        time_elapsed = time_finish - time_start
        print('Total time elasped: %.3f seconds' % time_elapsed)
        print('Each frame takes %.3f seconds' % (time_elapsed / dataset.get_test_size()))
Пример #3
0
def train_finetune(dataset, model_params, learning_rate, logs_path, max_training_iters, save_step, display_step,
           global_step, iter_mean_grad=1, batch_size=1, resume_training=False, config=None, 
           use_image_summary=True, ckpt_name="osmn"):
    """Train OSMN
    Args:
    dataset: Reference to a Dataset object instance
    model_params: Model parameters
    initial_ckpt: Path to the checkpoint to initialize the whole network or visual modulator, depend on seg_ckpt
    seg_ckpt: If seg_ckpt is not None, initial_ckpt is used to initialize the visual modulator, and seg_ckpt is used to
            initialize segmentation network
    learning_rate: Value for the learning rate. It can be a number or an instance to a learning rate object.
    logs_path: Path to store the checkpoints
    max_training_iters: Number of training iterations
    save_step: A checkpoint will be created every save_steps
    display_step: Information of the training will be displayed every display_steps
    global_step: Reference to a Variable that keeps track of the training steps
    iter_mean_grad: Number of gradient computations that are average before updating the weights
    batch_size: Size of the training batch
    resume_training: Boolean to try to restore from a previous checkpoint (True) or not (False)
    config: Reference to a Configuration object used in the creation of a Session
    use_image_summary: Boolean to use image summary during training in tensorboard
    ckpt_name: checkpoint name for saving
    Returns:
    """
    model_name = os.path.join(logs_path, ckpt_name+".ckpt")
    if config is None:
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        # config.log_device_placement = True
        config.allow_soft_placement = True

    tf.logging.set_verbosity(tf.logging.INFO)

    # Prepare the input data
    guide_image = tf.placeholder(tf.float32, [batch_size, 224, 224, 3])
    input_image = tf.placeholder(tf.float32, [batch_size, None, None, 3])
    gb_image = tf.placeholder(tf.float32, [batch_size, None, None, 1])
    input_label = tf.placeholder(tf.float32, [batch_size, None, None, 1])

    model_func = get_model_func(model_params.base_model)
    net, end_points = model_func([guide_image, gb_image, input_image], model_params, is_training=True)


    # Define loss
    with tf.name_scope('losses'):

        main_loss = class_balanced_cross_entropy_loss(net, input_label)
        tf.summary.scalar('main_loss', main_loss)

        total_loss = main_loss + tf.add_n(tf.losses.get_regularization_losses())
        tf.summary.scalar('total_loss', total_loss)

    # Define optimization method
    with tf.name_scope('optimization'):
        tf.summary.scalar('learning_rate', learning_rate)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        grads_and_vars = optimizer.compute_gradients(total_loss)
        with tf.name_scope('grad_accumulator'):
            grad_accumulator = {}
            for ind in range(0, len(grads_and_vars)):
                if grads_and_vars[ind][0] is not None:
                    grad_accumulator[ind] = tf.ConditionalAccumulator(grads_and_vars[ind][0].dtype)
        with tf.name_scope('apply_gradient'):
            grad_accumulator_ops = []
            for var_ind, grad_acc in grad_accumulator.items():
                var_name = str(grads_and_vars[var_ind][1].name).split(':')[0]
                var_grad = grads_and_vars[var_ind][0]
                grad_accumulator_ops.append(grad_acc.apply_grad(var_grad,
                                                                local_step=global_step))
        with tf.name_scope('take_gradients'):
            mean_grads_and_vars = []
            for var_ind, grad_acc in grad_accumulator.items():
                mean_grads_and_vars.append(
                    (grad_acc.take_grad(iter_mean_grad), grads_and_vars[var_ind][1]))
            apply_gradient_op = optimizer.apply_gradients(mean_grads_and_vars, global_step=global_step)
    # Log training info
    merged_summary_op = tf.summary.merge_all()

    # Log results on training images
    if use_image_summary:
        probabilities = tf.nn.sigmoid(net)
        input_image_orig = input_image / model_params.scale_value + model_params.mean_value
        guide_image_orig = guide_image / model_params.scale_value + model_params.mean_value
        img_summary = binary_seg_summary(input_image_orig, probabilities, gb_image, input_label)
        vg_summary = visual_guide_summary(guide_image_orig)
    # Initialize variables
    init = tf.global_variables_initializer()

    with tf.Session(config=config) as sess:
        print('Init variable')
        sess.run(init)
        tvars = tf.trainable_variables()
        # op to write logs to Tensorboard
        summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())

        # Create saver to manage checkpoints
        saver = tf.train.Saver(max_to_keep=40)

        last_ckpt_path = tf.train.latest_checkpoint(logs_path)
        if last_ckpt_path is not None and resume_training:
            # Load last checkpoint
            print('Initializing from previous checkpoint...')
            saver.restore(sess, last_ckpt_path)
            step = global_step.eval() + 1
        elif model_params.whole_model_path == '':
            print('Initializing from pre-trained imagenet model...')
            if model_params.use_visual_modulator:
                load_model(model_params.vis_mod_model_path, 'osmn/modulator')(sess)
            if model_params.seg_model_path != '':
                load_model(model_params.seg_model_path, 'osmn/seg')(sess)
            step = 1
        else:
            print('Initializing from pre-trained model...')
            load_model(model_params.whole_model_path, 'osmn')(sess)
            step = 1
        #if model_params.base_model != 'lite':
        sess.run(interp_surgery(tf.global_variables()))
        print('Weights initialized')

        print('Start training')
        while step < max_training_iters + 1:
            # Average the gradient
            for _ in range(0, iter_mean_grad):
                batch_g_image, batch_gb_image, batch_image, batch_label = dataset.next_batch(batch_size, 'train')
                run_res = sess.run([total_loss, merged_summary_op] + grad_accumulator_ops,
                        feed_dict={guide_image: batch_g_image, gb_image: batch_gb_image,
                        input_image: batch_image, input_label: batch_label})
                batch_loss = run_res[0]
                summary = run_res[1]

            # Apply the gradients
            sess.run(apply_gradient_op)  # Momentum updates here its statistics

            # Save summary reports
            summary_writer.add_summary(summary, step)

            # Display training status
            if step % display_step == 0:
                if use_image_summary:
                    #test_g_image, test_gb_image, test_image, _ = dataset.next_batch(batch_size, 'test')
                    curr_img_summary = sess.run([img_summary, vg_summary], feed_dict={guide_image:batch_g_image, gb_image:batch_gb_image,
                        input_image: batch_image, input_label: batch_label})
                    for s in curr_img_summary:
                        summary_writer.add_summary(s, step)
                print("{} Iter {}: Training Loss = {:.4f}".format(datetime.now(), step, batch_loss),file=sys.stderr)

            # Save a checkpoint
            if step % save_step == 0:
                save_path = saver.save(sess, model_name, global_step=global_step)
                print("Model saved in file: %s" % save_path)

            step += 1

        if (step - 1) % save_step != 0:
            save_path = saver.save(sess, model_name, global_step=global_step)
            print("Model saved in file: %s" % save_path)

        print('Finished training.')