Пример #1
0
  def UpdateModels(self):
    loader = model_loader.ModelLoader(DEVICE_MODEL_DATA)
    added, updated = loader.Update()
    if added or updated:
      memcache.delete(memcache_keys.INDEX_INFO)
      memcache.delete(memcache_keys.PRODUCT_COUNT_KEY)
      memcache.delete(memcache_keys.MANUFACTURER_MODEL_COUNTS)
      memcache.delete(memcache_keys.CATEGORY_MODEL_COUNTS)
      memcache.delete(memcache_keys.TAG_MODEL_COUNTS)

    UpdateModificationTime(timestamp_keys.DEVICES)
    return ('Models:\nAdded: %s\nUpdated: %s' %
            (', '.join(added), ', '.join(updated)))
Пример #2
0
import sys
import tensorflow as tf

from os import getcwd

MODULE_DIR = getcwd() + '/tfmodules'
sys.path.insert(0, MODULE_DIR)

import path_manager
import model_loader as ld
import trainer as tr
import train_config as tr_config

sys.path.insert(0, path_manager.EXPORT_DIR)

model_export_dir = '/runtrain-20180613-yglee'
import_meta_filename = model_export_dir + '/net.ckpt.meta'
export_pb_filename = 'net.pb'

model_loader = ld.ModelLoader(subdir_and_filename=import_meta_filename)
model_graph_def = model_loader.load_model(clear_devices=True)

# converting to pb / pbdef files
train_config = tr_config.TrainConfig()

trainer = tr.Trainer(model_graph=model_graph_def, config=train_config)

trainer.export_graphdef_as_pb(subdir=model_export_dir,
                              filename=export_pb_filename)
Пример #3
0
stepvalues = [3000, 5000]
base_lr = 0.000002
rate_decay = 0.1
snapshot = 1000
display = 20
save_summary = 10

dataset_root = '/home/yfji/benchmark/Keypoint/fashionAI_key_points_train_20180227/train/'

with tf.device('/gpu:2'):
    g = tf.Graph()
    with g.as_default():
        loader = loader.DataLoader(csv_path=op.join(dataset_root,
                                                    'Annotations/train.csv'),
                                   dataset_root=dataset_root)
        model_loader = ml.ModelLoader(load_mode='ckpt',
                                      model_path='./models/fashion.ckpt-25000')

        datashape, labelshape = loader.get_shape()

        tensor_in = tf.placeholder(shape=datashape, dtype=tf.float32)
        label = tf.placeholder(shape=labelshape, dtype=tf.float32)

        tensor_out = network.make_cpm(tensor_in)

        diff2_stage1 = tf.square(tf.subtract(tensor_out[0], label))
        diff2_stage2 = tf.square(tf.subtract(tensor_out[1], label))

        #    with tf.name_scope('loss1'):
        loss_stage1 = 0.5 * tf.reduce_mean(
            tf.reduce_sum(tf.reduce_sum(tf.reduce_sum(diff2_stage1, axis=1),
                                        axis=1),
Пример #4
0

dataset_root = '/home/yfji/Workspace/Python/FashionAI/test_new/test/'
iteration = 20000

with tf.Graph().as_default():
    tensor_in = tf.placeholder(shape=[1, input_size, input_size, 3],
                               dtype=tf.float32)

    tensor_out = network.make_cpm(tensor_in)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        model_loader = ml.ModelLoader(load_mode='ckpt',
                                      model_path='models/fashion.ckpt-%d' %
                                      iteration)
        model_loader.load_model(session=sess)

        with open(
                '/home/yfji/benchmark/Keypoint/fashionAI_key_points_train_20180227/train/Annotations/train.csv',
                'r') as tf:
            reader = csv.reader(tf)
            header = None
            for row in reader:
                header = list(row)
                break
                print(header)
        csv_name = 'pred_iter_%d_0.85.csv' % iteration
        rows = []
        with open(op.join(dataset_root, 'test.csv'), 'r') as f: