Пример #1
0
def best_arch_search():
    model.eval()
    result_df = pd.DataFrame(columns=['Genotype', 'Val_reward'])
    ntokens = len(corpus.dictionary)
    i = 0
    hidden = model.init_hidden(eval_batch_size)
    for m in range(search_arch_num):
        parallel_model.sample_new_architecture()

        data, targets = get_batch(val_data, i, args)
        targets = targets.view(-1)

        hidden = repackage_hidden(hidden)
        #log_prob, hidden = parallel_model(data, hidden)
        #loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
        loss, hidden = parallel_model._loss(hidden, data, targets)

        reward = architect.reward_c / torch.exp(loss)

        gene = parallel_model.genotype()
        temp_df = pd.DataFrame([[gene, reward.item()]],
                               columns=['Genotype', 'Val_reward'])
        result_df = result_df.append(temp_df, ignore_index=True)

        i += args.bptt
        if i >= search_data.size(0) - 2:
            i = 0

    result_df = result_df.sort_values(by='Val_reward', ascending=False)
    result_df.to_csv('search_result.csv')
def evaluate(data_source, batch_size=10):
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    ntokens = len(corpus.dictionary)
    hidden = model.init_hidden(batch_size)
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, args.bptt):
            data, targets = get_batch(data_source, i, args, evaluation=True)
            targets = targets.view(-1)
            log_prob, hidden = parallel_model(data, hidden)
            loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), targets).data
            total_loss += loss * len(data)
            hidden = repackage_hidden(hidden)
    return total_loss.item() / len(data_source)
Пример #3
0
def evaluate(data_source, batch_size=10, data_name='dev'):
    data_source = DataLoader(args.data_dir + '/dev.json',
                             batch_size,
                             opt,
                             vocab,
                             evaluation=True)
    print('Evaluating Model!')
    # Turn on evaluation mode which disables dropout.
    model.eval()
    total_loss = 0
    # ntokens = len(corpus.dictionary)
    # ntokens = len(vocab.word2id)
    # for i in range(0, data_source.size(0) - 1, args.bptt):
    predictions = []
    for i in range(len(data_source)):
        batch = data_source.next_batch()
        batch_size = len(batch['relation'])
        hidden = model.init_hidden(batch_size)[0]
        # data, targets = get_batch(data_source, i, args, evaluation=True)
        data = batch
        targets = batch['relation']
        targets = targets.view(-1)
        # print('tokens: {} | hidden: {}'.format(batch['tokens'].shape, hidden.shape))
        log_prob, hidden = parallel_model(data, hidden)
        loss = nn.functional.nll_loss(
            log_prob, targets).data  # log_prob.view(-1, log_prob.size(2))

        total_loss += loss * len(data)

        batch_predictions = torch.argmax(log_prob, dim=-1).cpu().data.numpy()
        batch_predictions = [
            id2label[prediction] for prediction in batch_predictions
        ]
        predictions += batch_predictions

        # hidden = repackage_hidden(hidden)

    precision, recall, f1 = scorer.score(dev_data.gold(), predictions)
    logging.info('{} set | Precision: {} | Recall: {} | F1: {}'.format(
        data_name, precision, recall, f1))
    print('total loss: {}'.format(total_loss))
    return total_loss / len(data_source)
Пример #4
0
def train():
    assert (
        args.batch_size % args.small_batch_size == 0
    ), "batch_size must be divisible by small_batch_size"

    # Turn on training mode which enables dropout.
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = [
        model.init_hidden(args.small_batch_size)
        for _ in range(args.batch_size // args.small_batch_size)
    ]
    hidden_valid = [
        model.init_hidden(args.small_batch_size)
        for _ in range(args.batch_size // args.small_batch_size)
    ]
    batch, i = 0, 0
    while i < train_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.0
        # Prevent excessively small or negative sequence lengths
        # seq_len = max(5, int(np.random.normal(bptt, 5)))
        # # There's a very small chance that it could select a very long sequence length resulting in OOM
        # seq_len = min(seq_len, args.bptt + args.max_seq_len_delta)
        seq_len = int(bptt)

        lr2 = optimizer.param_groups[0]["lr"]
        optimizer.param_groups[0]["lr"] = lr2 * seq_len / args.bptt
        model.train()

        data_valid, targets_valid = get_batch(
            search_data, i % (search_data.size(0) - 1), args
        )
        data, targets = get_batch(train_data, i, args, seq_len=seq_len)

        optimizer.zero_grad()

        start, end, s_id = 0, args.small_batch_size, 0
        while start < args.batch_size:
            # cur_data, cur_targets = (
            #     data[:, start:end],
            #     targets[:, start:end].contiguous().view(-1),
            # )
            # cur_data_valid, cur_targets_valid = (
            #     data_valid[:, start:end],
            #     targets_valid[:, start:end].contiguous(),
            # )
            cur_data, cur_targets = (data, targets.contiguous())
            cur_data_valid, cur_targets_valid = (
                data_valid, targets_valid.contiguous())

            # Starting each batch, we detach the hidden state from how it was previously produced.
            # If we didn't, the model would try backpropagating all the way to start of the dataset.
            hidden[s_id] = repackage_hidden(hidden[s_id])
            hidden_valid[s_id] = repackage_hidden(hidden_valid[s_id])

            hidden_valid[s_id], grad_norm = architect.step(
                hidden[s_id],
                cur_data,
                cur_targets,
                hidden_valid[s_id],
                cur_data_valid,
                cur_targets_valid,
                optimizer,
                args.unrolled,
            )

            # assuming small_batch_size = batch_size so we don't accumulate gradients
            optimizer.zero_grad()
            hidden[s_id] = repackage_hidden(hidden[s_id])

            log_prob, hidden[s_id], rnn_hs, dropped_rnn_hs = parallel_model(
                cur_data, hidden[s_id], return_h=True
            )
            raw_loss = nn.functional.nll_loss(
                log_prob.view(-1, log_prob.size(2)), cur_targets
            )

            loss = raw_loss
            # Activiation Regularization
            if args.alpha > 0:
                loss = loss + sum(
                    args.alpha * dropped_rnn_h.pow(2).mean()
                    for dropped_rnn_h in dropped_rnn_hs[-1:]
                )
            # Temporal Activation Regularization (slowness)
            loss = loss + sum(
                args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean()
                for rnn_h in rnn_hs[-1:]
            )
            loss *= args.small_batch_size / args.batch_size
            total_loss += raw_loss.data * args.small_batch_size / args.batch_size
            loss.backward()

            s_id += 1
            start = end
            end = start + args.small_batch_size

            gc.collect()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        # total_loss += raw_loss.data
        optimizer.param_groups[0]["lr"] = lr2
        if batch % args.log_interval == 0 and batch > 0:
            logging.info(parallel_model.genotype())
            print(F.softmax(parallel_model.weights, dim=-1))
            cur_loss = total_loss.item() / args.log_interval
            elapsed = time.time() - start_time
            logging.info(
                "| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    epoch,
                    batch,
                    len(train_data) // args.bptt,
                    optimizer.param_groups[0]["lr"],
                    elapsed * 1000 / args.log_interval,
                    cur_loss,
                    math.exp(cur_loss),
                )
            )
            total_loss = 0
            start_time = time.time()
        batch += 1
        i += seq_len
Пример #5
0
def train(train_data, dev_data):

    assert args.batch_size % args.small_batch_size == 0, 'batch_size must be divisible by small_batch_size'
    ntokens = len(vocab.word2id)
    # Turn on training mode which enables dropout.
    total_loss = 0
    total_valid_loss = 0
    start_time = time.time()
    # ntokens = len(corpus.dictionary)

    # batch, i = 0, 0
    for batch in range(len(train_data)):
        train_batch = train_data.next_batch()
        dev_batch = dev_data.next_batch()
        # for batch, (train_batch, dev_batch) in enumerate(zip(train_data, dev_data)):
        # hidden = [model.init_hidden(args.small_batch_size) for _ in range(args.batch_size // args.small_batch_size)]
        # hidden_valid = [model.init_hidden(args.small_batch_size) for _ in
        #                 range(args.batch_size // args.small_batch_size)]

        #print('hidden shape: {} | hidden valid: {} |'.format(hidden.shape, hidden_valid.shape))
        # while i < train_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
        # Prevent excessively small or negative sequence lengths
        # seq_len = max(5, int(np.random.normal(bptt, 5)))
        # # There's a very small chance that it could select a very long sequence length resulting in OOM
        # seq_len = min(seq_len, args.bptt + args.max_seq_len_delta)
        # seq_len = int(bptt)

        lr2 = optimizer.param_groups[0]['lr']
        optimizer.param_groups[0]['lr'] = lr2  #* seq_len / args.bptt
        model.train()

        # data_valid, targets_valid = get_batch(search_data, i % (search_data.size(0) - 1), args)
        # data, targets = get_batch(train_data, i, args, seq_len=seq_len)

        optimizer.zero_grad()

        # start, end, s_id = 0, args.small_batch_size, 0
        cur_data = train_batch
        cur_targets = train_batch['relation']

        cur_data_valid = dev_batch
        cur_targets_valid = dev_batch['relation']

        hidden = model.init_hidden(len(train_batch['relation']))[0]
        hidden_valid = model.init_hidden(len(dev_batch['relation']))[0]
        # print('Train Batch Shapes: | Hidden: {} | Tokens: {} |'.format(hidden.shape, cur_data['tokens'].shape))
        # print('Dev Batch Shapes: | Hidden: {} | Tokens: {} |'.format(hidden_valid.shape, cur_data_valid['tokens'].shape))
        assert hidden.shape[1] == cur_data['tokens'].shape[
            0], 'Hidden shape: {} | tokens shape: {}'.format(
                hidden.shape, cur_data['tokens'].shape)
        assert hidden_valid.shape[1] == cur_data_valid['tokens'].shape[
            0], 'Hidden shape: {} | tokens shape: {}'.format(
                hidden_valid.shape, cur_data_valid['tokens'].shape)

        # while start < args.batch_size:
        #     cur_data, cur_targets = data[:, start: end], targets[:, start: end].contiguous().view(-1)
        #     cur_data_valid, cur_targets_valid = data_valid[:, start: end], targets_valid[:, start: end].contiguous().view(-1)

        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        # hidden[s_id] = repackage_hidden(hidden[s_id])
        # hidden_valid[s_id] = repackage_hidden(hidden_valid[s_id])
        #print(hidden.shape)
        #hidden = repackage_hidden(hidden)
        #hidden_valid = repackage_hidden(hidden_valid)

        # hidden_valid[s_id], grad_norm = architect.step(
        #         hidden[s_id], cur_data, cur_targets,
        #         hidden_valid[s_id], cur_data_valid, cur_targets_valid,
        #         optimizer,
        #         args.unrolled)
        hidden_valid, valid_loss = architect.step(hidden, cur_data,
                                                  cur_targets, hidden_valid,
                                                  cur_data_valid,
                                                  cur_targets_valid, optimizer,
                                                  args.unrolled)
        total_valid_loss += valid_loss.data
        # print('Finished architect step...')
        # assuming small_batch_size = batch_size so we don't accumulate gradients
        optimizer.zero_grad()
        # hidden[s_id] = repackage_hidden(hidden[s_id])
        #hidden = repackage_hidden(hidden)

        # log_prob, hidden[s_id], rnn_hs, dropped_rnn_hs = parallel_model(cur_data, hidden[s_id], return_h=True)
        # print('Entering model training...')
        hidden = torch.autograd.Variable(hidden.data)
        # Hidden should be all zeros
        print('hidden all zeros?: (not {})'.format(torch.sum(hidden)))
        log_prob, hidden, rnn_hs, dropped_rnn_hs = parallel_model(
            cur_data, hidden, return_h=True)
        # print('received predictions')
        raw_loss = nn.functional.nll_loss(log_prob, cur_targets)
        # print('received loss' )

        loss = raw_loss
        # Activiation Regularization
        if args.alpha > 0:
            loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean()
                              for dropped_rnn_h in dropped_rnn_hs[-1:])
        # Temporal Activation Regularization (slowness)
        loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean()
                          for rnn_h in rnn_hs[-1:])
        # loss *= args.small_batch_size / args.batch_size
        total_loss += raw_loss.data  # * args.small_batch_size / args.batch_size
        loss.backward()

        # s_id += 1
        # start = end
        # end = start + args.small_batch_size
        # print('backpropogated...')
        gc.collect()
        # print('garbage collected...')

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs.
        torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
        # print('clipped gradients...')
        optimizer.step()
        # print('updated gradients...')
        # total_loss += raw_loss.data
        optimizer.param_groups[0]['lr'] = lr2
        if batch % args.log_interval == 0:  # and batch > 0:
            logging.info(parallel_model.genotype())
            print(F.softmax(parallel_model.weights, dim=-1))
            #print('total loss: {}'.format(type(total_loss)))
            #print('total loss: {}'.format(total_loss))
            #print('total loss: {}'.format(total_loss.shape))
            #cur_loss = total_loss[0] / args.log_interval
            cur_loss = total_loss / args.log_interval
            cur_valid_loss = total_valid_loss / args.log_interval
            elapsed = time.time() - start_time
            logging.info(
                '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                'loss {:5.2f} | ppl {:8.2f} | valid loss: {:5.2f} | valid ppl: {:5.2f}'
                .format(epoch, batch, len(train_data),
                        optimizer.param_groups[0]['lr'],
                        elapsed * 1000 / args.log_interval, cur_loss,
                        math.exp(cur_loss), cur_valid_loss,
                        math.exp(cur_valid_loss)))
            total_loss = 0
            start_time = time.time()
        # print('on to next batch...')
        # batch += 1
        # i += seq_len
    print('Reached end of epoch training!')
Пример #6
0
def train_arch():
    assert args.batch_size % args.small_batch_size == 0, 'batch_size must be divisible by small_batch_size'

    # Turn on training mode which enables dropout.
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden_valid = [
        model.init_hidden(args.small_batch_size)
        for _ in range(args.batch_size // args.small_batch_size)
    ]
    batch, i = 0, 0
    ep_loss = 0
    model.eval()
    while i < search_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
        # Prevent excessively small or negative sequence lengths
        # seq_len = max(5, int(np.random.normal(bptt, 5)))
        # # There's a very small chance that it could select a very long sequence length resulting in OOM
        # seq_len = min(seq_len, args.bptt + args.max_seq_len_delta)
        seq_len = int(bptt)

        data_valid, targets_valid = get_batch(search_data, i, args)

        start, end, s_id = 0, args.small_batch_size, 0
        while start < args.batch_size:
            cur_data_valid, cur_targets_valid = data_valid[:, start:
                                                           end], targets_valid[:,
                                                                               start:
                                                                               end].contiguous(
                                                                               ).view(
                                                                                   -1
                                                                               )

            hidden_valid[s_id] = repackage_hidden(hidden_valid[s_id])

            parallel_model.sample_new_architecture()
            if i == 0:
                for e in model.edge_weights:
                    print(F.softmax(e, dim=-1))

                print(F.softmax(model.weights, dim=-1))
                print(model.baseline)

            if (batch + 1) % arch_opt_step == 0:
                is_opt_step = True
            else:
                is_opt_step = False

            if i == 0:
                architect.optimizer.zero_grad()

            hidden_valid[s_id], raw_loss = architect.step(
                hidden_valid[s_id], cur_data_valid, cur_targets_valid,
                is_opt_step)
            raw_loss, hidden_valid[s_id] = model._loss(hidden_valid[s_id],
                                                       cur_data_valid,
                                                       cur_targets_valid)
            raw_loss = raw_loss.detach()

            loss = raw_loss

            total_loss += raw_loss.data * args.small_batch_size / args.batch_size
            ep_loss += raw_loss * len(cur_data_valid)

            s_id += 1
            start = end
            end = start + args.small_batch_size

            gc.collect()

        # total_loss += raw_loss.data
        if batch % args.log_interval == 0 and batch > 0:
            logging.info(parallel_model.genotype())
            print(F.softmax(parallel_model.weights, dim=-1))
            cur_loss = total_loss.item() / args.log_interval
            elapsed = time.time() - start_time
            logging.info(
                '| arch_epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                'loss {:5.2f} | ppl {:8.2f}'.format(
                    epoch, batch,
                    len(search_data) // args.bptt,
                    optimizer.param_groups[0]['lr'],
                    elapsed * 1000 / args.log_interval, cur_loss,
                    math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        batch += 1
        i += seq_len

    #Optimizer step for residual of valid queue
    if not is_opt_step:
        architect.optimizer.step()

    return ep_loss.item() / len(search_data)
Пример #7
0
def train():
    assert args.batch_size % args.small_batch_size == 0, 'batch_size must be divisible by small_batch_size'

    # Turn on training mode which enables dropout.
    total_loss = 0
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    hidden = [
        model.init_hidden(args.small_batch_size)
        for _ in range(args.batch_size // args.small_batch_size)
    ]
    batch, i = 0, 0
    model.train()
    while i < train_data.size(0) - 1 - 1:
        bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2.
        # Prevent excessively small or negative sequence lengths
        # seq_len = max(5, int(np.random.normal(bptt, 5)))
        # # There's a very small chance that it could select a very long sequence length resulting in OOM
        # seq_len = min(seq_len, args.bptt + args.max_seq_len_delta)
        seq_len = int(bptt)

        lr2 = optimizer.param_groups[0]['lr']
        optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt

        data, targets = get_batch(train_data, i, args, seq_len=seq_len)

        start, end, s_id = 0, args.small_batch_size, 0
        while start < args.batch_size:
            cur_data, cur_targets = data[:,
                                         start:end], targets[:, start:
                                                             end].contiguous(
                                                             ).view(-1)

            optimizer.zero_grad()
            hidden[s_id] = repackage_hidden(hidden[s_id])

            parallel_model.sample_new_architecture()
            log_prob, hidden[s_id], rnn_hs, dropped_rnn_hs = parallel_model(
                cur_data, hidden[s_id], return_h=True)
            raw_loss = nn.functional.nll_loss(
                log_prob.view(-1, log_prob.size(2)), cur_targets)

            loss = raw_loss
            # Activiation Regularization
            if args.alpha > 0:
                loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean()
                                  for dropped_rnn_h in dropped_rnn_hs[-1:])
            # Temporal Activation Regularization (slowness)
            loss = loss + sum(args.beta *
                              (rnn_h[1:] - rnn_h[:-1]).pow(2).mean()
                              for rnn_h in rnn_hs[-1:])
            loss *= args.small_batch_size / args.batch_size
            total_loss += raw_loss.data * args.small_batch_size / args.batch_size
            loss.backward()

            s_id += 1
            start = end
            end = start + args.small_batch_size

            gc.collect()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        optimizer.step()

        # total_loss += raw_loss.data
        optimizer.param_groups[0]['lr'] = lr2
        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss.item() / args.log_interval
            elapsed = time.time() - start_time
            logging.info(
                '| dag_epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                'loss {:5.2f} | ppl {:8.2f}'.format(
                    epoch, batch,
                    len(train_data) // args.bptt,
                    optimizer.param_groups[0]['lr'],
                    elapsed * 1000 / args.log_interval, cur_loss,
                    math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
        batch += 1
        i += seq_len