def save_single_video(self): my_multi_test_datasets = multi_test_datasets( batch_size=self.batch_size, video_num=self.video_imgs_num, frame_interval=2, is_frame=True, is_Optical=False, crop_size=4, img_size=self.img_size_h) gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto( gpu_options=gpu_options)) as sess: sess.run(tf.global_variables_initializer()) self.restore_model_weghts(sess) seletced_dataset_idx = 3 selected_video_idx = 2 video_label = my_multi_test_datasets.init_test_single_videos( seletced_dataset_idx, selected_video_idx) video_lenth = 0 image_batches_list = [] while 1: batches = my_multi_test_datasets.get_single_videos_batches() if not (batches == []): # print(batches.shape) video_lenth += (batches.shape[0] * batches.shape[1]) out_image1, out_image2 = sess.run( [self.out_image_con1, self.out_image_con2], feed_dict={ self.train_in_ph: batches, self.phase: False }) image_batches_list.append(out_image1) image_batches_list.append(out_image2) else: break image_batches_list = np.concatenate(image_batches_list, axis=0) save_batch_images( image_batches_list, self.gray_img_save_path, 'datasets_%d_video_%d.jpg' % (seletced_dataset_idx, selected_video_idx)) print('test') return
def test_video(self): def reshape_batches(inputs_batches): return np.reshape( inputs_batches, newshape=[ inputs_batches.shape[0] * inputs_batches.shape[1], inputs_batches.shape[2], inputs_batches.shape[3], inputs_batches.shape[4] ]) my_multi_test_datasets = multi_test_datasets(batch_size=4, video_num=4, frame_interval=2, is_frame=True, is_Optical=False, crop_size=4, img_size=self.img_size_h) gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto( gpu_options=gpu_options)) as sess: sess.run(tf.global_variables_initializer()) self.restore_model_weghts(sess) video_label = my_multi_test_datasets.init_test_single_videos( seletced_dataset_idx=2, selected_video_idx=2) video_lenth = 0 psnr1_list = [] optical_loss_list = [] gray_loss_list = [] optical_frame_list = [] gray_frame_list = [] optical_frame_label_list = [] gray_frame_label_list = [] while 1: batches = my_multi_test_datasets.get_single_videos_batches() if not (batches == []): print(batches.shape) video_lenth += (batches.shape[0] * batches.shape[1]) batch_data_gray = batches[:, :, :, :, 0:1] gray_loss, gray_frames, gray_psnr1 = sess.run( [ self.gray_loss_sequences_frame_mean, self.gray_train_out_ph, self.gray_loss_sequences_frame_psnr1 ], feed_dict={ self.gray_train_in_ph: batch_data_gray, self.phase: False }) # print('optical loss shape',optical_loss.shape) print('gray loss shape', gray_loss.shape) print('psnr shape', gray_psnr1.shape) # print('gray loss shape',gray_loss.shape) # optical_loss = optical_loss.flatten() gray_loss = gray_loss.flatten() gray_psnr1 = gray_psnr1.flatten() # optical_frame_list.append(reshape_batches(optical_frames)) gray_frame_list.append(reshape_batches(gray_frames)) gray_frame_label_list.append( reshape_batches(batch_data_gray)) # optical_frame_label_list.append(reshape_batches(batch_data_optical)) # optical_loss_list.append(optical_loss) gray_loss_list.append(gray_loss) psnr1_list.append(gray_psnr1) else: break # print('optical-loss') # optical_loss_list = max_min_np(np.concatenate(optical_loss_list,axis=0)) # save_roc_auc_plot_img('',optical_loss_list, video_label) print('gray-loss') gray_loss_list = max_min_np(np.concatenate(gray_loss_list, axis=0)) print(gray_loss_list) print(video_label) save_roc_auc_plot_img('', gray_loss_list, video_label) print('psnr1-auc') gray_psnr1 = max_min_np(np.concatenate(psnr1_list, axis=0)) # print(gray_psnr1) save_roc_auc_plot_img('', gray_psnr1, video_label) gray_frame_list = np.concatenate(gray_frame_list, axis=0) # optical_frame_list = np.concatenate(optical_frame_list, axis=0) gray_frame_label_list = np.concatenate(gray_frame_label_list, axis=0) # optical_frame_label_list = np.concatenate(optical_frame_label_list, axis=0) gray_frame_list = np.concatenate( [gray_frame_list, gray_frame_label_list], axis=1) # optical_frame_list = np.concatenate([optical_frame_list, optical_frame_label_list], axis=2) save_batch_images(gray_frame_list, self.gray_img_save_path, 'test_gray.jpg') return