Пример #1
0
def train_model(params,
                weights_dict,
                load_dataset=None,
                trainable_pred=True,
                trainable_est=True,
                weights_path=None):
    """
    Training function. Sets the training parameters from params. Build or loads the model and launches the training.
    :param params: Dictionary of network hyperparameters.
    :param load_dataset: Load dataset from file or build it from the parameters.
    :return: None
    """
    check_params(params)

    if params['RELOAD'] > 0:
        logging.info('Resuming training.')
        # Load data
        if load_dataset is None:
            if params['REBUILD_DATASET']:
                logging.info('Rebuilding dataset.')

                pred_vocab = params.get('PRED_VOCAB', None)
                if pred_vocab is not None:
                    dataset_voc = loadDataset(params['PRED_VOCAB'])
                    dataset = build_dataset(params, dataset_voc.vocabulary,
                                            dataset_voc.vocabulary_len)
                else:
                    dataset = build_dataset(params)
            else:
                logging.info('Updating dataset.')
                dataset = loadDataset(params['DATASET_STORE_PATH'] +
                                      '/Dataset_' + params['DATASET_NAME'] +
                                      '_' + params['SRC_LAN'] +
                                      params['TRG_LAN'] + '.pkl')

                for split, filename in params['TEXT_FILES'].iteritems():
                    dataset = update_dataset_from_file(
                        dataset,
                        params['DATA_ROOT_PATH'] + '/' + filename +
                        params['SRC_LAN'],
                        params,
                        splits=list([split]),
                        output_text_filename=params['DATA_ROOT_PATH'] + '/' +
                        filename + params['TRG_LAN'],
                        remove_outputs=False,
                        compute_state_below=True,
                        recompute_references=True)
                    dataset.name = params['DATASET_NAME'] + '_' + params[
                        'SRC_LAN'] + params['TRG_LAN']
                saveDataset(dataset, params['DATASET_STORE_PATH'])

        else:
            logging.info('Reloading and using dataset.')
            dataset = loadDataset(load_dataset)
    else:
        # Load data
        if load_dataset is None:
            pred_vocab = params.get('PRED_VOCAB', None)
            if pred_vocab is not None:
                dataset_voc = loadDataset(params['PRED_VOCAB'])
                # for the testing pharse handle model vocab differences
                #dataset_voc.vocabulary['target_text'] = dataset_voc.vocabulary['target']
                #dataset_voc.vocabulary_len['target_text'] = dataset_voc.vocabulary_len['target']
                dataset = build_dataset(params, dataset_voc.vocabulary,
                                        dataset_voc.vocabulary_len)
            else:
                dataset = build_dataset(params)
        else:
            dataset = loadDataset(load_dataset)

    params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['INPUTS_IDS_DATASET'][0]]
    #params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['OUTPUTS_IDS_DATASET_FULL'][0]]
    params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len['target_text']

    # Build model
    if params['RELOAD'] == 0:  # build new model
        nmt_model = TranslationModel(params,
                                     model_type=params['MODEL_TYPE'],
                                     verbose=params['VERBOSE'],
                                     model_name=params['MODEL_NAME'],
                                     vocabularies=dataset.vocabulary,
                                     store_path=params['STORE_PATH'],
                                     trainable_pred=trainable_pred,
                                     trainable_est=trainable_est,
                                     clear_dirs=True,
                                     weights_path=weights_path)

        # Define the inputs and outputs mapping from our Dataset instance to our model
        inputMapping = dict()
        for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
            pos_source = dataset.ids_inputs.index(id_in)
            id_dest = nmt_model.ids_inputs[i]
            inputMapping[id_dest] = pos_source
        nmt_model.setInputsMapping(inputMapping)

        outputMapping = dict()
        for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
            pos_target = dataset.ids_outputs.index(id_out)
            id_dest = nmt_model.ids_outputs[i]
            outputMapping[id_dest] = pos_target
        nmt_model.setOutputsMapping(outputMapping)

    else:  # resume from previously trained model
        nmt_model = TranslationModel(params,
                                     model_type=params['MODEL_TYPE'],
                                     verbose=params['VERBOSE'],
                                     model_name=params['MODEL_NAME'],
                                     vocabularies=dataset.vocabulary,
                                     store_path=params['STORE_PATH'],
                                     set_optimizer=False,
                                     trainable_pred=trainable_pred,
                                     trainable_est=trainable_est,
                                     weights_path=weights_path)

        # Define the inputs and outputs mapping from our Dataset instance to our model
        inputMapping = dict()
        for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
            pos_source = dataset.ids_inputs.index(id_in)
            id_dest = nmt_model.ids_inputs[i]
            inputMapping[id_dest] = pos_source
        nmt_model.setInputsMapping(inputMapping)

        outputMapping = dict()
        for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
            pos_target = dataset.ids_outputs.index(id_out)
            id_dest = nmt_model.ids_outputs[i]
            outputMapping[id_dest] = pos_target

        nmt_model.setOutputsMapping(outputMapping)
        nmt_model = updateModel(nmt_model,
                                params['STORE_PATH'],
                                params['RELOAD'],
                                reload_epoch=params['RELOAD_EPOCH'])
        nmt_model.setParams(params)
        nmt_model.setOptimizer()
        params['EPOCH_OFFSET'] = params['RELOAD'] if params['RELOAD_EPOCH'] else \
            int(params['RELOAD'] * params['BATCH_SIZE'] / dataset.len_train)

    # Store configuration as pkl
    dict2pkl(params, params['STORE_PATH'] + '/config')

    # Callbacks
    callbacks = buildCallbacks(params, nmt_model, dataset)

    # Training
    total_start_time = timer()

    logger.debug('Starting training!')
    training_params = {
        'n_epochs':
        params['MAX_EPOCH'],
        'batch_size':
        params['BATCH_SIZE'],
        'homogeneous_batches':
        params['HOMOGENEOUS_BATCHES'],
        'maxlen':
        params['MAX_OUTPUT_TEXT_LEN'],
        'joint_batches':
        params['JOINT_BATCHES'],
        'lr_decay':
        params.get('LR_DECAY', None),  # LR decay parameters
        'reduce_each_epochs':
        params.get('LR_REDUCE_EACH_EPOCHS', True),
        'start_reduction_on_epoch':
        params.get('LR_START_REDUCTION_ON_EPOCH', 0),
        'lr_gamma':
        params.get('LR_GAMMA', 0.9),
        'lr_reducer_type':
        params.get('LR_REDUCER_TYPE', 'linear'),
        'lr_reducer_exp_base':
        params.get('LR_REDUCER_EXP_BASE', 0),
        'lr_half_life':
        params.get('LR_HALF_LIFE', 50000),
        'epochs_for_save':
        params['EPOCHS_FOR_SAVE'],
        'verbose':
        params['VERBOSE'],
        'eval_on_sets':
        params['EVAL_ON_SETS_KERAS'],
        'n_parallel_loaders':
        params['PARALLEL_LOADERS'],
        'extra_callbacks':
        callbacks,
        'reload_epoch':
        params['RELOAD'],
        'epoch_offset':
        params.get('EPOCH_OFFSET', 0),
        'data_augmentation':
        params['DATA_AUGMENTATION'],
        'patience':
        params.get('PATIENCE', 0),  # early stopping parameters
        'metric_check':
        params.get('STOP_METRIC', None)
        if params.get('EARLY_STOP', False) else None,
        'eval_on_epochs':
        params.get('EVAL_EACH_EPOCHS', True),
        'each_n_epochs':
        params.get('EVAL_EACH', 1),
        'start_eval_on_epoch':
        params.get('START_EVAL_ON_EPOCH', 0)
    }
    if weights_dict is not None:
        for layer in nmt_model.model.layers:
            if layer.name in weights_dict:
                layer.set_weights(weights_dict[layer.name])

    nmt_model.trainNet(dataset, training_params)

    if weights_dict is not None:
        for layer in nmt_model.model.layers:
            weights_dict[layer.name] = layer.get_weights()

    total_end_time = timer()
    time_difference = total_end_time - total_start_time
    logging.info('In total is {0:.2f}s = {1:.2f}m'.format(
        time_difference, time_difference / 60.0))
Пример #2
0
def train_model(params, load_dataset=None):
    """
    Training function. Sets the training parameters from params. Build or loads the model and launches the training.
    :param params: Dictionary of network hyperparameters.
    :param load_dataset: Load dataset from file or build it from the parameters.
    :return: None
    """

    if params['RELOAD'] > 0:
        logging.info('Resuming training.')

    check_params(params)

    # Load data
    if load_dataset is None:
        dataset = build_dataset(params)
    else:
        dataset = loadDataset(load_dataset)

    params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['INPUTS_IDS_DATASET'][0]]
    params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['OUTPUTS_IDS_DATASET'][0]]

    # Build model
    if params['RELOAD'] == 0:  # build new model
        nmt_model = TranslationModel(params,
                                     model_type=params['MODEL_TYPE'],
                                     verbose=params['VERBOSE'],
                                     model_name=params['MODEL_NAME'],
                                     vocabularies=dataset.vocabulary,
                                     store_path=params['STORE_PATH'])
        dict2pkl(params, params['STORE_PATH'] + '/config')

        # Define the inputs and outputs mapping from our Dataset instance to our model
        inputMapping = dict()
        for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
            pos_source = dataset.ids_inputs.index(id_in)
            id_dest = nmt_model.ids_inputs[i]
            inputMapping[id_dest] = pos_source
        nmt_model.setInputsMapping(inputMapping)

        outputMapping = dict()
        for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
            pos_target = dataset.ids_outputs.index(id_out)
            id_dest = nmt_model.ids_outputs[i]
            outputMapping[id_dest] = pos_target
        nmt_model.setOutputsMapping(outputMapping)

    else:  # resume from previously trained model
        nmt_model = TranslationModel(params,
                                     model_type=params['MODEL_TYPE'],
                                     verbose=params['VERBOSE'],
                                     model_name=params['MODEL_NAME'],
                                     vocabularies=dataset.vocabulary,
                                     store_path=params['STORE_PATH'],
                                     set_optimizer=False,
                                     clear_dirs=False)

        # Define the inputs and outputs mapping from our Dataset instance to our model
        inputMapping = dict()
        for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
            pos_source = dataset.ids_inputs.index(id_in)
            id_dest = nmt_model.ids_inputs[i]
            inputMapping[id_dest] = pos_source
        nmt_model.setInputsMapping(inputMapping)

        outputMapping = dict()
        for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
            pos_target = dataset.ids_outputs.index(id_out)
            id_dest = nmt_model.ids_outputs[i]
            outputMapping[id_dest] = pos_target

        nmt_model.setOutputsMapping(outputMapping)
        nmt_model = updateModel(nmt_model, params['STORE_PATH'],
                                params['RELOAD'])
        nmt_model.setParams(params)
        nmt_model.setOptimizer()

    # Callbacks
    callbacks = buildCallbacks(params, nmt_model, dataset)

    # Training
    total_start_time = timer()

    logger.debug('Starting training!')
    training_params = {
        'n_epochs':
        params['MAX_EPOCH'],
        'batch_size':
        params['BATCH_SIZE'],
        'homogeneous_batches':
        params['HOMOGENEOUS_BATCHES'],
        'maxlen':
        params['MAX_OUTPUT_TEXT_LEN'],
        'joint_batches':
        params['JOINT_BATCHES'],
        'lr_decay':
        params['LR_DECAY'],
        'lr_gamma':
        params['LR_GAMMA'],
        'epochs_for_save':
        params['EPOCHS_FOR_SAVE'],
        'verbose':
        params['VERBOSE'],
        'eval_on_sets':
        params['EVAL_ON_SETS_KERAS'],
        'n_parallel_loaders':
        params['PARALLEL_LOADERS'],
        'extra_callbacks':
        callbacks,
        'reload_epoch':
        params['RELOAD'],
        'epoch_offset':
        params['RELOAD'],
        'data_augmentation':
        params['DATA_AUGMENTATION'],
        'patience':
        params.get('PATIENCE', 0),  # early stopping parameters
        'metric_check':
        params.get('STOP_METRIC', None)
        if params.get('EARLY_STOP', False) else None,
        'eval_on_epochs':
        params.get('EVAL_EACH_EPOCHS', True),
        'each_n_epochs':
        params.get('EVAL_EACH', 1),
        'start_eval_on_epoch':
        params.get('START_EVAL_ON_EPOCH', 0)
    }
    nmt_model.trainNet(dataset, training_params)

    total_end_time = timer()
    time_difference = total_end_time - total_start_time
    logging.info('In total is {0:.2f}s = {1:.2f}m'.format(
        time_difference, time_difference / 60.0))
Пример #3
0
    vocabularies=ds.vocabulary,
    store_path='trained_models/Ross_M7_45/',
    verbose=True)

inputMapping = dict()
for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
    pos_source = ds.ids_inputs.index(id_in)
    id_dest = nmt_model.ids_inputs[i]
    inputMapping[id_dest] = pos_source

nmt_model.setInputsMapping(inputMapping)
outputMapping = dict()
for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
    pos_target = ds.ids_outputs.index(id_out)
    id_dest = nmt_model.ids_outputs[i]
    outputMapping[id_dest] = pos_target
nmt_model.setOutputsMapping(outputMapping)

training_params = {
    'n_epochs': 45,
    'batch_size': 20,
    'maxlen': 30,
    'epochs_for_save': 5,
    'verbose': 1,
    'eval_on_sets': [],
    'reload_epoch': 36,
    'epoch_offset': 36
}

nmt_model.trainNet(ds, training_params)
Пример #4
0
def train_model(params, load_dataset=None):
    """
    Training function. Sets the training parameters from params. Build or loads the model and launches the training.
    :param params: Dictionary of network hyperparameters.
    :param load_dataset: Load dataset from file or build it from the parameters.
    :return: None
    """
    check_params(params)

    if params['RELOAD'] > 0:
        logging.info('Resuming training.')
        # Load data
        if load_dataset is None:
            if params['REBUILD_DATASET']:
                logging.info('Rebuilding dataset.')
                dataset = build_dataset(params)
            else:
                logging.info('Updating dataset.')
                dataset = loadDataset(params['DATASET_STORE_PATH'] +
                                      '/Dataset_' + params['DATASET_NAME'] +
                                      '_' + params['SRC_LAN'] +
                                      params['TRG_LAN'] + '.pkl')
                params['EPOCH_OFFSET'] = params['RELOAD'] if params['RELOAD_EPOCH'] else \
                    int(params['RELOAD'] * params['BATCH_SIZE'] / dataset.len_train)
                for split, filename in iteritems(params['TEXT_FILES']):
                    dataset = update_dataset_from_file(
                        dataset,
                        params['DATA_ROOT_PATH'] + '/' + filename +
                        params['SRC_LAN'],
                        params,
                        splits=list([split]),
                        output_text_filename=params['DATA_ROOT_PATH'] + '/' +
                        filename + params['TRG_LAN'],
                        remove_outputs=False,
                        compute_state_below=True,
                        recompute_references=True)
                    dataset.name = params['DATASET_NAME'] + '_' + params[
                        'SRC_LAN'] + params['TRG_LAN']
                saveDataset(dataset, params['DATASET_STORE_PATH'])

        else:
            logging.info('Reloading and using dataset.')
            dataset = loadDataset(load_dataset)
    else:
        # Load data
        if load_dataset is None:
            dataset = build_dataset(params)
        else:
            dataset = loadDataset(load_dataset)

    params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['INPUTS_IDS_DATASET'][0]]
    params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[
        params['OUTPUTS_IDS_DATASET'][0]]

    # Build model
    set_optimizer = True if params['RELOAD'] == 0 else False
    clear_dirs = True if params['RELOAD'] == 0 else False

    # build new model
    nmt_model = TranslationModel(params,
                                 model_type=params['MODEL_TYPE'],
                                 verbose=params['VERBOSE'],
                                 model_name=params['MODEL_NAME'],
                                 vocabularies=dataset.vocabulary,
                                 store_path=params['STORE_PATH'],
                                 set_optimizer=set_optimizer,
                                 clear_dirs=clear_dirs)

    # Define the inputs and outputs mapping from our Dataset instance to our model
    inputMapping = dict()
    for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
        pos_source = dataset.ids_inputs.index(id_in)
        id_dest = nmt_model.ids_inputs[i]
        inputMapping[id_dest] = pos_source
    nmt_model.setInputsMapping(inputMapping)

    outputMapping = dict()
    for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
        pos_target = dataset.ids_outputs.index(id_out)
        id_dest = nmt_model.ids_outputs[i]
        outputMapping[id_dest] = pos_target
    nmt_model.setOutputsMapping(outputMapping)

    if params['RELOAD'] > 0:
        nmt_model = updateModel(nmt_model,
                                params['STORE_PATH'],
                                params['RELOAD'],
                                reload_epoch=params['RELOAD_EPOCH'])
        nmt_model.setParams(params)
        nmt_model.setOptimizer()
        if params.get('EPOCH_OFFSET') is None:
            params['EPOCH_OFFSET'] = params['RELOAD'] if params['RELOAD_EPOCH'] else \
                int(params['RELOAD'] * params['BATCH_SIZE'] / dataset.len_train)

    # Store configuration as pkl
    dict2pkl(params, params['STORE_PATH'] + '/config')

    # Callbacks
    callbacks = buildCallbacks(params, nmt_model, dataset)

    # Training
    total_start_time = timer()

    logger.debug('Starting training!')
    training_params = {
        'n_epochs':
        params['MAX_EPOCH'],
        'batch_size':
        params['BATCH_SIZE'],
        'homogeneous_batches':
        params['HOMOGENEOUS_BATCHES'],
        'maxlen':
        params['MAX_OUTPUT_TEXT_LEN'],
        'joint_batches':
        params['JOINT_BATCHES'],
        'lr_decay':
        params.get('LR_DECAY', None),  # LR decay parameters
        'reduce_each_epochs':
        params.get('LR_REDUCE_EACH_EPOCHS', True),
        'start_reduction_on_epoch':
        params.get('LR_START_REDUCTION_ON_EPOCH', 0),
        'lr_gamma':
        params.get('LR_GAMMA', 0.9),
        'lr_reducer_type':
        params.get('LR_REDUCER_TYPE', 'linear'),
        'lr_reducer_exp_base':
        params.get('LR_REDUCER_EXP_BASE', 0),
        'lr_half_life':
        params.get('LR_HALF_LIFE', 50000),
        'epochs_for_save':
        params['EPOCHS_FOR_SAVE'],
        'verbose':
        params['VERBOSE'],
        'eval_on_sets':
        params['EVAL_ON_SETS_KERAS'],
        'n_parallel_loaders':
        params['PARALLEL_LOADERS'],
        'extra_callbacks':
        callbacks,
        'reload_epoch':
        params['RELOAD'],
        'epoch_offset':
        params.get('EPOCH_OFFSET', 0),
        'data_augmentation':
        params['DATA_AUGMENTATION'],
        'patience':
        params.get('PATIENCE', 0),  # early stopping parameters
        'metric_check':
        params.get('STOP_METRIC', None)
        if params.get('EARLY_STOP', False) else None,
        'eval_on_epochs':
        params.get('EVAL_EACH_EPOCHS', True),
        'each_n_epochs':
        params.get('EVAL_EACH', 1),
        'start_eval_on_epoch':
        params.get('START_EVAL_ON_EPOCH', 0),
        'tensorboard':
        params.get('TENSORBOARD', False),
        'tensorboard_params': {
            'log_dir':
            params.get('LOG_DIR', 'tensorboard_logs'),
            'histogram_freq':
            params.get('HISTOGRAM_FREQ', 0),
            'batch_size':
            params.get('TENSORBOARD_BATCH_SIZE', params['BATCH_SIZE']),
            'write_graph':
            params.get('WRITE_GRAPH', True),
            'write_grads':
            params.get('WRITE_GRADS', False),
            'write_images':
            params.get('WRITE_IMAGES', False),
            'embeddings_freq':
            params.get('EMBEDDINGS_FREQ', 0),
            'embeddings_layer_names':
            params.get('EMBEDDINGS_LAYER_NAMES', None),
            'embeddings_metadata':
            params.get('EMBEDDINGS_METADATA', None),
            'label_word_embeddings_with_vocab':
            params.get('LABEL_WORD_EMBEDDINGS_WITH_VOCAB', False),
            'word_embeddings_labels':
            params.get('WORD_EMBEDDINGS_LABELS', None),
        }
    }
    nmt_model.trainNet(dataset, training_params)

    total_end_time = timer()
    time_difference = total_end_time - total_start_time
    logging.info('In total is {0:.2f}s = {1:.2f}m'.format(
        time_difference, time_difference / 60.0))