def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) if 'background' in args.mode: callback_logger = logging.info sys.stdout, sys.stderr = setup_logging( os.path.join(model_path, 'model.log')) verbose = 0 else: callback_logger = callable_print verbose = 1 json_cfg = load_model_json(args) json_cfg['model_path'] = model_path json_cfg['stdout'] = sys.stdout json_cfg['stderr'] = sys.stderr json_cfg['logger'] = callback_logger json_cfg['verbose'] = verbose config = ModelConfig(**json_cfg) if 'persistent' in args.mode: save_model_info(config, model_path) sys.path.append(args.model_dir) import model from model import fit model.fit(config)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) json_cfg = load_model_json(args, x_train=None, n_classes=None) config = ModelConfig(**json_cfg) sys.path.append(args.model_dir) import model from model import fit model.fit(config)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) rng = np.random.RandomState(args.seed) json_cfg = load_model_json(args, x_train=None, n_classes=None) model_cfg = ModelConfig(**json_cfg) if args.verbose: print("model_cfg " + str(model_cfg)) sys.path.append(args.model_dir) import model from model import build_model, fit_model, load_train, load_validation train_data = load_train(args, model_cfg) validation_data = load_validation(args, model_cfg) if args.verbose: print("loading model") model = build_model(model_cfg, train_data, validation_data) fit_model(model, train_data, validation_data, args)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args) rng = np.random.RandomState(args.seed) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name, n=args.n_train) x_valid, y_valid = load_model_data(args.validation_file, args.data_name, args.target_name, n=args.n_validation) train_files = args.extra_train_file + [args.train_file] train_files_iter = itertools.cycle(train_files) n_classes = max(np.unique(y_train)) + 1 json_cfg = load_model_json(args, x_train, n_classes) sys.path.append(args.model_dir) from model import Model model_cfg = ModelConfig(**json_cfg) model = Model(model_cfg) setattr(model, 'stop_training', False) best_accuracy = 0. best_epoch = 0 epoch = 1 iteration = 0 while True: if not keep_training(epoch, best_epoch, model_cfg): break train_loss = train_one_epoch(model, x_train, y_train, args, model_cfg, progress=args.progress) val_loss, val_accuracy = validate(model, x_valid, y_valid, args, model_cfg, progress=args.progress) if val_accuracy > best_accuracy: best_accuracy = val_accuracy best_epoch = epoch if model_path is not None: model.save_weights(model_path + '.npz') cPickle.dump(model, open(model_path + '.pkl', 'w')) print( 'epoch={epoch:05d}, iteration={iteration:05d}, loss={loss:.04f}, val_loss={val_loss:.04f}, val_acc={val_acc:.04f} best=[accuracy={best_accuracy:.04f} epoch={best_epoch:05d}]' .format(epoch=epoch, iteration=iteration, loss=train_loss, val_loss=val_loss, val_acc=val_accuracy, best_accuracy=best_accuracy, best_epoch=best_epoch)) iteration += 1 if iteration % len(train_files) == 0: epoch += 1 x_train, y_train = load_model_data(next(train_files_iter), args.data_name, args.target_name, n=args.n_train)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args, model_path) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name) x_validation, y_validation = load_model_data( args.validation_file, args.data_name, args.target_name) rng = np.random.RandomState(args.seed) if args.n_classes > -1: n_classes = args.n_classes else: n_classes = max(y_train)+1 n_classes, target_names, class_weight = load_target_data(args, n_classes) if class_weight is None and args.class_weight_auto: n_samples = len(y_train) weights = float(n_samples) / (n_classes * np.bincount(y_train)) if args.class_weight_exponent: weights = weights**args.class_weight_exponent class_weight = dict(zip(range(n_classes), weights)) if args.verbose: logging.debug("n_classes {0} min {1} max {2}".format( n_classes, min(y_train), max(y_train))) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) y_validation_one_hot = np_utils.to_categorical(y_validation, n_classes) if args.verbose: logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) min_vocab_index = np.min(x_train) max_vocab_index = np.max(x_train) if args.verbose: logging.debug("min vocab index {0} max vocab index {1}".format( min_vocab_index, max_vocab_index)) json_cfg = load_model_json(args, x_train, n_classes) if args.verbose: logging.debug("loading model") sys.path.append(args.model_dir) import model from model import build_model ####################################################################### # Subsetting ####################################################################### if args.subsetting_function: subsetter = getattr(M, args.subsetting_function) else: subsetter = None def take_subset(subsetter, path, x, y, y_one_hot, n): if subsetter is None: return x[0:n], y[0:n], y_one_hot[0:n] else: mask = subsetter(path) idx = np.where(mask)[0] idx = idx[0:n] return x[idx], y[idx], y_one_hot[idx] x_train, y_train, y_train_one_hot = take_subset( subsetter, args.train_file, x_train, y_train, y_train_one_hot, n=args.n_train) x_validation, y_validation, y_validation_one_hot = take_subset( subsetter, args.validation_file, x_validation, y_validation, y_validation_one_hot, n=args.n_validation) ####################################################################### # Preprocessing ####################################################################### if args.preprocessing_class: preprocessor = getattr(M, args.preprocessing_class)(seed=args.seed) else: preprocessor = modeling.preprocess.NullPreprocessor() if args.verbose: logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) model_cfg = ModelConfig(**json_cfg) if args.verbose: logging.info("model_cfg " + str(model_cfg)) net = build_model(model_cfg) setattr(net, 'stop_training', False) marshaller = None if isinstance(net, keras.models.Graph): marshaller = getattr(model, args.graph_marshalling_class)() logging.info('model has {n_params} parameters'.format( n_params=count_parameters(net))) if len(args.extra_train_file) > 1: callbacks = keras.callbacks.CallbackList() else: callbacks = [] save_model_info(args, model_path, model_cfg) callback_logger = logging.info if args.log else callable_print ####################################################################### # Callbacks that need validation set predictions. ####################################################################### pc = PredictionCallback(x_validation, callback_logger, marshaller=marshaller, batch_size=model_cfg.batch_size) callbacks.append(pc) if args.classification_report: cr = ClassificationReport(x_validation, y_validation, callback_logger, target_names=target_names) pc.add(cr) if args.confusion_matrix: cm = ConfusionMatrix(x_validation, y_validation, callback_logger) pc.add(cm) def get_mode(metric_name): return { 'val_loss': 'min', 'val_acc': 'max', 'val_f1': 'max', 'val_f2': 'max', 'val_f0.5': 'max' }[metric_name] if args.early_stopping or args.early_stopping_metric is not None: es = EarlyStopping(monitor=args.early_stopping_metric, mode=get_mode(args.early_stopping_metric), patience=model_cfg.patience, verbose=1) cb = DelegatingMetricCallback( x_validation, y_validation, callback_logger, delegate=es, metric_name=args.early_stopping_metric, marshaller=marshaller) pc.add(cb) if not args.no_save: if args.save_all_checkpoints: filepath = model_path + '/model-{epoch:04d}.h5' else: filepath = model_path + '/model.h5' mc = ModelCheckpoint( filepath=filepath, mode=get_mode(args.checkpoint_metric), verbose=1, monitor=args.checkpoint_metric, save_best_only=not args.save_every_epoch) cb = DelegatingMetricCallback( x_validation, y_validation, callback_logger, delegate=mc, metric_name=args.checkpoint_metric, marshaller=marshaller) pc.add(cb) if model_cfg.optimizer == 'SGD': callbacks.append(SingleStepLearningRateSchedule(patience=10)) if len(args.extra_train_file) > 1: args.extra_train_file.append(args.train_file) logging.info("Using the following files for training: " + ','.join(args.extra_train_file)) train_file_iter = itertools.cycle(args.extra_train_file) current_train = args.train_file callbacks._set_model(net) callbacks.on_train_begin(logs={}) epoch = batch = 0 while True: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) iteration = batch % len(args.extra_train_file) logging.info("epoch {epoch} iteration {iteration} - training with {train_file}".format( epoch=epoch, iteration=iteration, train_file=current_train)) callbacks.on_epoch_begin(epoch, logs={}) n_train = x_train.shape[0] callbacks.on_batch_begin(batch, logs={'size': n_train}) index_array = np.arange(n_train) if args.shuffle: rng.shuffle(index_array) batches = keras.models.make_batches(n_train, model_cfg.batch_size) logging.info("epoch {epoch} iteration {iteration} - starting {n_batches} batches".format( epoch=epoch, iteration=iteration, n_batches=len(batches))) avg_train_loss = avg_train_accuracy = 0. for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(net, keras.models.Graph): train_data = marshaller.marshal( x_train[batch_ids], y_train_one_hot[batch_ids]) train_loss = net.train_on_batch( train_data, class_weight=class_weight) # It looks like train_on_batch returns a different # type for graph than sequential models. train_loss = train_loss[0] train_accuracy = 0. else: train_loss, train_accuracy = net.train_on_batch( x_train[batch_ids], y_train_one_hot[batch_ids], accuracy=True, class_weight=class_weight) batch_end_logs = {'loss': train_loss, 'accuracy': train_accuracy} avg_train_loss = (avg_train_loss * batch_index + train_loss)/(batch_index + 1) avg_train_accuracy = (avg_train_accuracy * batch_index + train_accuracy)/(batch_index + 1) callbacks.on_batch_end(batch, logs={'loss': train_loss, 'accuracy': train_accuracy}) logging.info("epoch {epoch} iteration {iteration} - finished {n_batches} batches".format( epoch=epoch, iteration=iteration, n_batches=len(batches))) logging.info("epoch {epoch} iteration {iteration} - loss: {loss} - acc: {acc}".format( epoch=epoch, iteration=iteration, loss=avg_train_loss, acc=avg_train_accuracy)) batch += 1 # Validation frequency (this if-block) doesn't necessarily # occur in the same iteration as beginning of an epoch # (next if-block), so net.evaluate appears twice here. kwargs = { 'batch_size': model_cfg.batch_size, 'verbose': 0 if args.log else 1 } pargs = [] validation_data = {} if isinstance(net, keras.models.Graph): validation_data = marshaller.marshal( x_validation, y_validation_one_hot) pargs = [validation_data] else: pargs = [x_validation, y_validation_one_hot] kwargs['show_accuracy'] = True if (iteration + 1) % args.validation_freq == 0: if isinstance(net, keras.models.Graph): val_loss = net.evaluate(*pargs, **kwargs) y_hat = net.predict(validation_data, batch_size=model_cfg.batch_size) val_acc = accuracy_score(y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = net.evaluate( *pargs, **kwargs) logging.info("epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}".format( epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = {'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc} callbacks.on_epoch_end(epoch, epoch_end_logs) if batch % len(args.extra_train_file) == 0: if isinstance(net, keras.models.Graph): val_loss = net.evaluate(*pargs, **kwargs) y_hat = net.predict(validation_data, batch_size=model_cfg.batch_size) val_acc = accuracy_score(y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = net.evaluate( *pargs, **kwargs) logging.info("epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}".format( epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = {'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc} epoch += 1 callbacks.on_epoch_end(epoch, epoch_end_logs) if net.stop_training: logging.info("epoch {epoch} iteration {iteration} - done training".format( epoch=epoch, iteration=iteration)) break current_train = next(train_file_iter) x_train, y_train = load_model_data(current_train, args.data_name, args.target_name) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) if epoch > args.n_epochs: break callbacks.on_train_end(logs={}) else: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) if isinstance(net, keras.models.Graph): train_data = marshaller.marshal( x_train, y_train_one_hot) validation_data = marshaller.marshal( x_validation, y_validation_one_hot) net.fit(train_data, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, validation_data=validation_data, callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1) else: net.fit(x_train, y_train_one_hot, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, show_accuracy=True, validation_data=(x_validation, y_validation_one_hot), callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args) rng = np.random.RandomState(args.seed) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name, n=args.n_train) x_valid, y_valid = load_model_data( args.validation_file, args.data_name, args.target_name, n=args.n_validation) train_files = args.extra_train_file + [args.train_file] train_files_iter = itertools.cycle(train_files) n_classes = max(np.unique(y_train)) + 1 json_cfg = load_model_json(args, x_train, n_classes) sys.path.append(args.model_dir) from model import Model model_cfg = ModelConfig(**json_cfg) model = Model(model_cfg) setattr(model, 'stop_training', False) best_accuracy = 0. best_epoch = 0 epoch = 1 iteration = 0 while True: if not keep_training(epoch, best_epoch, model_cfg): break train_loss = train_one_epoch(model, x_train, y_train, args, model_cfg, progress=args.progress) val_loss, val_accuracy = validate(model, x_valid, y_valid, args, model_cfg, progress=args.progress) if val_accuracy > best_accuracy: best_accuracy = val_accuracy best_epoch = epoch if model_path is not None: model.save_weights(model_path + '.npz') cPickle.dump(model, open(model_path + '.pkl', 'w')) print('epoch={epoch:05d}, iteration={iteration:05d}, loss={loss:.04f}, val_loss={val_loss:.04f}, val_acc={val_acc:.04f} best=[accuracy={best_accuracy:.04f} epoch={best_epoch:05d}]'.format( epoch=epoch, iteration=iteration, loss=train_loss, val_loss=val_loss, val_acc=val_accuracy, best_accuracy=best_accuracy, best_epoch=best_epoch)) iteration += 1 if iteration % len(train_files) == 0: epoch += 1 x_train, y_train = load_model_data( next(train_files_iter), args.data_name, args.target_name, n=args.n_train)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args, model_path) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name) x_validation, y_validation = load_model_data( args.validation_file, args.data_name, args.target_name) rng = np.random.RandomState(args.seed) if args.n_classes > -1: n_classes = args.n_classes else: n_classes = max(y_train)+1 n_classes, target_names, class_weight = load_target_data(args, n_classes) if len(class_weight) == 0: n_samples = len(y_train) print('n_samples', n_samples) print('classes', range(n_classes)) print('weights', n_samples / (n_classes * np.bincount(y_train))) class_weight = dict(zip(range(n_classes), n_samples / (n_classes * np.bincount(y_train)))) print('class_weight', class_weight) logging.debug("n_classes {0} min {1} max {2}".format( n_classes, min(y_train), max(y_train))) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) y_validation_one_hot = np_utils.to_categorical(y_validation, n_classes) logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) min_vocab_index = np.min(x_train) max_vocab_index = np.max(x_train) logging.debug("min vocab index {0} max vocab index {1}".format( min_vocab_index, max_vocab_index)) json_cfg = load_model_json(args, x_train, n_classes) logging.debug("loading model") sys.path.append(args.model_dir) import model from model import build_model ####################################################################### # Subsetting ####################################################################### if args.subsetting_function: subsetter = getattr(model, args.subsetting_function) else: subsetter = None def take_subset(subsetter, path, x, y, y_one_hot, n): if subsetter is None: return x[0:n], y[0:n], y_one_hot[0:n] else: mask = subsetter(path) idx = np.where(mask)[0] idx = idx[0:n] return x[idx], y[idx], y_one_hot[idx] x_train, y_train, y_train_one_hot = take_subset( subsetter, args.train_file, x_train, y_train, y_train_one_hot, n=args.n_train) x_validation, y_validation, y_validation_one_hot = take_subset( subsetter, args.validation_file, x_validation, y_validation, y_validation_one_hot, n=args.n_validation) ####################################################################### # Preprocessing ####################################################################### if args.preprocessing_class: preprocessor = getattr(model, args.preprocessing_class)(seed=args.seed) else: preprocessor = modeling.preprocess.NullPreprocessor() logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) model_cfg = ModelConfig(**json_cfg) logging.info("model_cfg " + str(model_cfg)) model = build_model(model_cfg) setattr(model, 'stop_training', False) logging.info('model has {n_params} parameters'.format( n_params=count_parameters(model))) if len(args.extra_train_file) > 1: callbacks = keras.callbacks.CallbackList() else: callbacks = [] save_model_info(args, model_path, model_cfg) if not args.no_save: if args.save_all_checkpoints: filepath = model_path + '/model-{epoch:04d}.h5' else: filepath = model_path + '/model.h5' callbacks.append(ModelCheckpoint( filepath=filepath, verbose=1, save_best_only=not args.save_every_epoch)) callback_logger = logging.info if args.log else callable_print if args.n_epochs < sys.maxsize: # Number of epochs overrides patience. If the number of epochs # is specified on the command line, the model is trained for # exactly that number; otherwise, the model is trained with # early stopping using the patience specified in the model # configuration. callbacks.append(EarlyStopping( monitor='val_loss', patience=model_cfg.patience, verbose=1)) if args.classification_report: cr = ClassificationReport(x_validation, y_validation, callback_logger, target_names=target_names) callbacks.append(cr) if model_cfg.optimizer == 'SGD': callbacks.append(SingleStepLearningRateSchedule(patience=10)) if len(args.extra_train_file) > 1: args.extra_train_file.append(args.train_file) logging.info("Using the following files for training: " + ','.join(args.extra_train_file)) train_file_iter = itertools.cycle(args.extra_train_file) current_train = args.train_file callbacks._set_model(model) callbacks.on_train_begin(logs={}) epoch = batch = 0 while True: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) iteration = batch % len(args.extra_train_file) logging.info("epoch {epoch} iteration {iteration} - training with {train_file}".format( epoch=epoch, iteration=iteration, train_file=current_train)) callbacks.on_epoch_begin(epoch, logs={}) n_train = x_train.shape[0] callbacks.on_batch_begin(batch, logs={'size': n_train}) index_array = np.arange(n_train) if args.shuffle: rng.shuffle(index_array) batches = keras.models.make_batches(n_train, model_cfg.batch_size) logging.info("epoch {epoch} iteration {iteration} - starting {n_batches} batches".format( epoch=epoch, iteration=iteration, n_batches=len(batches))) avg_train_loss = avg_train_accuracy = 0. for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(model, keras.models.Graph): data = { 'input': x_train[batch_ids], 'output': y_train_one_hot[batch_ids] } train_loss = model.train_on_batch(data, class_weight=class_weight) train_accuracy = 0. else: train_loss, train_accuracy = model.train_on_batch( x_train[batch_ids], y_train_one_hot[batch_ids], accuracy=True, class_weight=class_weight) batch_end_logs = {'loss': train_loss, 'accuracy': train_accuracy} avg_train_loss = (avg_train_loss * batch_index + train_loss)/(batch_index + 1) avg_train_accuracy = (avg_train_accuracy * batch_index + train_accuracy)/(batch_index + 1) callbacks.on_batch_end(batch, logs={'loss': train_loss, 'accuracy': train_accuracy}) logging.info("epoch {epoch} iteration {iteration} - finished {n_batches} batches".format( epoch=epoch, iteration=iteration, n_batches=len(batches))) logging.info("epoch {epoch} iteration {iteration} - loss: {loss} - acc: {acc}".format( epoch=epoch, iteration=iteration, loss=avg_train_loss, acc=avg_train_accuracy)) batch += 1 # Validation frequency (this if-block) doesn't necessarily # occur in the same iteration as beginning of an epoch # (next if-block), so model.evaluate appears twice here. kwargs = { 'verbose': 0 if args.log else 1 } pargs = [] validation_data = {} if isinstance(model, keras.models.Graph): validation_data = { 'input': x_validation, 'output': y_validation_one_hot } pargs = [validation_data] else: pargs = [x_validation, y_validation_one_hot] kwargs['show_accuracy'] = True if (iteration + 1) % args.validation_freq == 0: if isinstance(model, keras.models.Graph): val_loss = model.evaluate(*pargs, **kwargs) y_hat = model.predict(validation_data) val_acc = accuracy_score(y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = model.evaluate( *pargs, **kwargs) logging.info("epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}".format( epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = {'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc} callbacks.on_epoch_end(epoch, epoch_end_logs) if batch % len(args.extra_train_file) == 0: if isinstance(model, keras.models.Graph): val_loss = model.evaluate(*pargs, **kwargs) y_hat = model.predict(validation_data) val_acc = accuracy_score(y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = model.evaluate( *pargs, **kwargs) logging.info("epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}".format( epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = {'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc} epoch += 1 callbacks.on_epoch_end(epoch, epoch_end_logs) if model.stop_training: logging.info("epoch {epoch} iteration {iteration} - done training".format( epoch=epoch, iteration=iteration)) break current_train = next(train_file_iter) x_train, y_train = load_model_data(current_train, args.data_name, args.target_name) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) if epoch > args.n_epochs: break callbacks.on_train_end(logs={}) else: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) if isinstance(model, keras.models.Graph): data = { 'input': x_train, 'output': y_train_one_hot } validation_data = { 'input': x_validation, 'output': y_validation_one_hot } model.fit(data, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, validation_data=validation_data, callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1) y_hat = model.predict(validation_data) print('val_acc %.04f' % accuracy_score(y_validation, np.argmax(y_hat['output'], axis=1))) else: model.fit(x_train, y_train_one_hot, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, show_accuracy=True, validation_data=(x_validation, y_validation_one_hot), callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1)
def main(args): if args.gpu >= 0: cuda.check_cuda_available() xp = cuda.cupy if args.gpu >= 0 else np model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name, n=args.n_train) x_validation, y_validation = load_model_data( args.validation_file, args.data_name, args.target_name, n=args.n_validation) rng = np.random.RandomState(args.seed) N = len(x_train) N_validation = len(x_validation) n_classes = max(np.unique(y_train)) + 1 json_cfg = load_model_json(args, x_train, n_classes) print('args.model_dir', args.model_dir) sys.path.append(args.model_dir) from model import Model model_cfg = ModelConfig(**json_cfg) model = Model(model_cfg) setattr(model, 'stop_training', False) if args.gpu >= 0: cuda.get_device(args.gpu).use() model.to_gpu() best_accuracy = 0. best_epoch = 0 def keep_training(epoch, best_epoch): if model_cfg.n_epochs is not None and epoch > model_cfg.n_epochs: return False if epoch > 1 and epoch - best_epoch > model_cfg.patience: return False return True epoch = 1 while True: if not keep_training(epoch, best_epoch): break if args.shuffle: perm = np.random.permutation(N) else: perm = np.arange(N) sum_accuracy = 0 sum_loss = 0 pbar = progressbar.ProgressBar(term_width=40, widgets=[' ', progressbar.Percentage(), ' ', progressbar.ETA()], maxval=N).start() for j, i in enumerate(six.moves.range(0, N, model_cfg.batch_size)): pbar.update(j+1) x_batch = xp.asarray(x_train[perm[i:i + model_cfg.batch_size]].flatten()) y_batch = xp.asarray(y_train[perm[i:i + model_cfg.batch_size]]) pred, loss, acc = model.fit(x_batch, y_batch) sum_loss += float(loss.data) * len(y_batch) sum_accuracy += float(acc.data) * len(y_batch) pbar.finish() print('train epoch={}, mean loss={}, accuracy={}'.format( epoch, sum_loss / N, sum_accuracy / N)) # Validation set evaluation sum_accuracy = 0 sum_loss = 0 pbar = progressbar.ProgressBar(term_width=40, widgets=[' ', progressbar.Percentage(), ' ', progressbar.ETA()], maxval=N_validation).start() for i in six.moves.range(0, N_validation, model_cfg.batch_size): pbar.update(i+1) x_batch = xp.asarray(x_validation[i:i + model_cfg.batch_size].flatten()) y_batch = xp.asarray(y_validation[i:i + model_cfg.batch_size]) pred, loss, acc = model.predict(x_batch, target=y_batch) sum_loss += float(loss.data) * len(y_batch) sum_accuracy += float(acc.data) * len(y_batch) pbar.finish() validation_accuracy = sum_accuracy / N_validation validation_loss = sum_loss / N_validation if validation_accuracy > best_accuracy: best_accuracy = validation_accuracy best_epoch = epoch if model_path is not None: if args.gpu >= 0: model.to_cpu() store = { 'args': args, 'model': model, } cPickle.dump(store, open(model_path + '.store', 'w')) if args.gpu >= 0: model.to_gpu() print('validation epoch={}, mean loss={}, accuracy={} best=[accuracy={} epoch={}]'.format( epoch, validation_loss, validation_accuracy, best_accuracy, best_epoch)) epoch += 1
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args, model_path) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name) x_validation, y_validation = load_model_data(args.validation_file, args.data_name, args.target_name) rng = np.random.RandomState(args.seed) if args.n_classes > -1: n_classes = args.n_classes else: n_classes = max(y_train) + 1 n_classes, target_names, class_weight = load_target_data(args, n_classes) if class_weight is None and args.class_weight_auto: n_samples = len(y_train) weights = float(n_samples) / (n_classes * np.bincount(y_train)) if args.class_weight_exponent: weights = weights**args.class_weight_exponent class_weight = dict(zip(range(n_classes), weights)) if args.verbose: logging.debug("n_classes {0} min {1} max {2}".format( n_classes, min(y_train), max(y_train))) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) y_validation_one_hot = np_utils.to_categorical(y_validation, n_classes) if args.verbose: logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) min_vocab_index = np.min(x_train) max_vocab_index = np.max(x_train) if args.verbose: logging.debug("min vocab index {0} max vocab index {1}".format( min_vocab_index, max_vocab_index)) json_cfg = load_model_json(args, x_train, n_classes) if args.verbose: logging.debug("loading model") sys.path.append(args.model_dir) import model from model import build_model ####################################################################### # Subsetting ####################################################################### if args.subsetting_function: subsetter = getattr(M, args.subsetting_function) else: subsetter = None def take_subset(subsetter, path, x, y, y_one_hot, n): if subsetter is None: return x[0:n], y[0:n], y_one_hot[0:n] else: mask = subsetter(path) idx = np.where(mask)[0] idx = idx[0:n] return x[idx], y[idx], y_one_hot[idx] x_train, y_train, y_train_one_hot = take_subset(subsetter, args.train_file, x_train, y_train, y_train_one_hot, n=args.n_train) x_validation, y_validation, y_validation_one_hot = take_subset( subsetter, args.validation_file, x_validation, y_validation, y_validation_one_hot, n=args.n_validation) ####################################################################### # Preprocessing ####################################################################### if args.preprocessing_class: preprocessor = getattr(M, args.preprocessing_class)(seed=args.seed) else: preprocessor = modeling.preprocess.NullPreprocessor() if args.verbose: logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) model_cfg = ModelConfig(**json_cfg) if args.verbose: logging.info("model_cfg " + str(model_cfg)) net = build_model(model_cfg) setattr(net, 'stop_training', False) marshaller = None if isinstance(net, keras.models.Graph): marshaller = getattr(model, args.graph_marshalling_class)() logging.info('model has {n_params} parameters'.format( n_params=count_parameters(net))) if len(args.extra_train_file) > 1: callbacks = keras.callbacks.CallbackList() else: callbacks = [] save_model_info(args, model_path, model_cfg) callback_logger = logging.info if args.log else callable_print ####################################################################### # Callbacks that need validation set predictions. ####################################################################### pc = PredictionCallback(x_validation, callback_logger, marshaller=marshaller, batch_size=model_cfg.batch_size) callbacks.append(pc) if args.classification_report: cr = ClassificationReport(x_validation, y_validation, callback_logger, target_names=target_names) pc.add(cr) if args.confusion_matrix: cm = ConfusionMatrix(x_validation, y_validation, callback_logger) pc.add(cm) def get_mode(metric_name): return { 'val_loss': 'min', 'val_acc': 'max', 'val_f1': 'max', 'val_f2': 'max', 'val_f0.5': 'max' }[metric_name] if args.early_stopping or args.early_stopping_metric is not None: es = EarlyStopping(monitor=args.early_stopping_metric, mode=get_mode(args.early_stopping_metric), patience=model_cfg.patience, verbose=1) cb = DelegatingMetricCallback(x_validation, y_validation, callback_logger, delegate=es, metric_name=args.early_stopping_metric, marshaller=marshaller) pc.add(cb) if not args.no_save: if args.save_all_checkpoints: filepath = model_path + '/model-{epoch:04d}.h5' else: filepath = model_path + '/model.h5' mc = ModelCheckpoint(filepath=filepath, mode=get_mode(args.checkpoint_metric), verbose=1, monitor=args.checkpoint_metric, save_best_only=not args.save_every_epoch) cb = DelegatingMetricCallback(x_validation, y_validation, callback_logger, delegate=mc, metric_name=args.checkpoint_metric, marshaller=marshaller) pc.add(cb) if model_cfg.optimizer == 'SGD': callbacks.append(SingleStepLearningRateSchedule(patience=10)) if len(args.extra_train_file) > 1: args.extra_train_file.append(args.train_file) logging.info("Using the following files for training: " + ','.join(args.extra_train_file)) train_file_iter = itertools.cycle(args.extra_train_file) current_train = args.train_file callbacks._set_model(net) callbacks.on_train_begin(logs={}) epoch = batch = 0 while True: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) iteration = batch % len(args.extra_train_file) logging.info( "epoch {epoch} iteration {iteration} - training with {train_file}" .format(epoch=epoch, iteration=iteration, train_file=current_train)) callbacks.on_epoch_begin(epoch, logs={}) n_train = x_train.shape[0] callbacks.on_batch_begin(batch, logs={'size': n_train}) index_array = np.arange(n_train) if args.shuffle: rng.shuffle(index_array) batches = keras.models.make_batches(n_train, model_cfg.batch_size) logging.info( "epoch {epoch} iteration {iteration} - starting {n_batches} batches" .format(epoch=epoch, iteration=iteration, n_batches=len(batches))) avg_train_loss = avg_train_accuracy = 0. for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(net, keras.models.Graph): train_data = marshaller.marshal(x_train[batch_ids], y_train_one_hot[batch_ids]) train_loss = net.train_on_batch(train_data, class_weight=class_weight) # It looks like train_on_batch returns a different # type for graph than sequential models. train_loss = train_loss[0] train_accuracy = 0. else: train_loss, train_accuracy = net.train_on_batch( x_train[batch_ids], y_train_one_hot[batch_ids], accuracy=True, class_weight=class_weight) batch_end_logs = { 'loss': train_loss, 'accuracy': train_accuracy } avg_train_loss = (avg_train_loss * batch_index + train_loss) / (batch_index + 1) avg_train_accuracy = (avg_train_accuracy * batch_index + train_accuracy) / (batch_index + 1) callbacks.on_batch_end(batch, logs={ 'loss': train_loss, 'accuracy': train_accuracy }) logging.info( "epoch {epoch} iteration {iteration} - finished {n_batches} batches" .format(epoch=epoch, iteration=iteration, n_batches=len(batches))) logging.info( "epoch {epoch} iteration {iteration} - loss: {loss} - acc: {acc}" .format(epoch=epoch, iteration=iteration, loss=avg_train_loss, acc=avg_train_accuracy)) batch += 1 # Validation frequency (this if-block) doesn't necessarily # occur in the same iteration as beginning of an epoch # (next if-block), so net.evaluate appears twice here. kwargs = { 'batch_size': model_cfg.batch_size, 'verbose': 0 if args.log else 1 } pargs = [] validation_data = {} if isinstance(net, keras.models.Graph): validation_data = marshaller.marshal(x_validation, y_validation_one_hot) pargs = [validation_data] else: pargs = [x_validation, y_validation_one_hot] kwargs['show_accuracy'] = True if (iteration + 1) % args.validation_freq == 0: if isinstance(net, keras.models.Graph): val_loss = net.evaluate(*pargs, **kwargs) y_hat = net.predict(validation_data, batch_size=model_cfg.batch_size) val_acc = accuracy_score( y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = net.evaluate(*pargs, **kwargs) logging.info( "epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}" .format(epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = { 'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc } callbacks.on_epoch_end(epoch, epoch_end_logs) if batch % len(args.extra_train_file) == 0: if isinstance(net, keras.models.Graph): val_loss = net.evaluate(*pargs, **kwargs) y_hat = net.predict(validation_data, batch_size=model_cfg.batch_size) val_acc = accuracy_score( y_validation, np.argmax(y_hat['output'], axis=1)) else: val_loss, val_acc = net.evaluate(*pargs, **kwargs) logging.info( "epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}" .format(epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = { 'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc } epoch += 1 callbacks.on_epoch_end(epoch, epoch_end_logs) if net.stop_training: logging.info( "epoch {epoch} iteration {iteration} - done training". format(epoch=epoch, iteration=iteration)) break current_train = next(train_file_iter) x_train, y_train = load_model_data(current_train, args.data_name, args.target_name) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) if epoch > args.n_epochs: break callbacks.on_train_end(logs={}) else: x_train, y_train_one_hot = preprocessor.fit_transform( x_train, y_train_one_hot) x_validation, y_validation_one_hot = preprocessor.transform( x_validation, y_validation_one_hot) if isinstance(net, keras.models.Graph): train_data = marshaller.marshal(x_train, y_train_one_hot) validation_data = marshaller.marshal(x_validation, y_validation_one_hot) net.fit(train_data, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, validation_data=validation_data, callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1) else: net.fit(x_train, y_train_one_hot, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, show_accuracy=True, validation_data=(x_validation, y_validation_one_hot), callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1)
def main(args): model_id = build_model_id(args) model_path = build_model_path(args, model_id) setup_model_dir(args, model_path) sys.stdout, sys.stderr = setup_logging(args, model_path) x_train, y_train = load_model_data(args.train_file, args.data_name, args.target_name) x_validation, y_validation = load_model_data(args.validation_file, args.data_name, args.target_name) rng = np.random.RandomState(args.seed) if args.n_classes > -1: n_classes = args.n_classes else: n_classes = max(y_train) + 1 n_classes, target_names, class_weight = load_target_data(args, n_classes) logging.debug("n_classes {0} min {1} max {2}".format( n_classes, min(y_train), max(y_train))) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) y_validation_one_hot = np_utils.to_categorical(y_validation, n_classes) logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) min_vocab_index = np.min(x_train) max_vocab_index = np.max(x_train) logging.debug("min vocab index {0} max vocab index {1}".format( min_vocab_index, max_vocab_index)) json_cfg = load_model_json(args, x_train, n_classes) logging.debug("loading model") sys.path.append(args.model_dir) import model from model import build_model if args.subsetting_function: subsetter = getattr(model, args.subsetting_function) else: subsetter = None def take_subset(subsetter, path, x, y, y_one_hot, n): if subsetter is None: return x[0:n], y[0:n], y_one_hot[0:n] else: mask = subsetter(path) idx = np.where(mask)[0] idx = idx[0:n] return x[idx], y[idx], y_one_hot[idx] x_train, y_train, y_train_one_hot = take_subset(subsetter, args.train_file, x_train, y_train, y_train_one_hot, n=args.n_train) x_validation, y_validation, y_validation_one_hot = take_subset( subsetter, args.validation_file, x_validation, y_validation, y_validation_one_hot, n=args.n_validation) logging.debug("y_train_one_hot " + str(y_train_one_hot.shape)) logging.debug("x_train " + str(x_train.shape)) model_cfg = ModelConfig(**json_cfg) logging.info("model_cfg " + str(model_cfg)) model = build_model(model_cfg) setattr(model, 'stop_training', False) logging.info('model has {n_params} parameters'.format( n_params=count_parameters(model))) if len(args.extra_train_file) > 1: callbacks = keras.callbacks.CallbackList() else: callbacks = [] save_model_info(args, model_path, model_cfg) if not args.no_save: callbacks.append( ModelCheckpoint(filepath=model_path + '/model-{epoch:04d}.h5', verbose=1, save_best_only=True)) callback_logger = logging.info if args.log else callable_print if args.n_epochs < sys.maxsize: # Number of epochs overrides patience. If the number of epochs # is specified on the command line, the model is trained for # exactly that number; otherwise, the model is trained with # early stopping using the patience specified in the model # configuration. callbacks.append( EarlyStopping(monitor='val_loss', patience=model_cfg.patience, verbose=1)) if args.classification_report: cr = ClassificationReport(x_validation, y_validation, callback_logger, target_names=target_names) callbacks.append(cr) if model_cfg.optimizer == 'SGD': callbacks.append(SingleStepLearningRateSchedule(patience=10)) if len(args.extra_train_file) > 1: args.extra_train_file.append(args.train_file) logging.info("Using the following files for training: " + ','.join(args.extra_train_file)) train_file_iter = itertools.cycle(args.extra_train_file) current_train = args.train_file callbacks._set_model(model) callbacks.on_train_begin(logs={}) epoch = batch = 0 while True: iteration = batch % len(args.extra_train_file) logging.info( "epoch {epoch} iteration {iteration} - training with {train_file}" .format(epoch=epoch, iteration=iteration, train_file=current_train)) callbacks.on_epoch_begin(epoch, logs={}) n_train = x_train.shape[0] callbacks.on_batch_begin(batch, logs={'size': n_train}) index_array = np.arange(n_train) if args.shuffle: rng.shuffle(index_array) batches = keras.models.make_batches(n_train, model_cfg.batch_size) logging.info( "epoch {epoch} iteration {iteration} - starting {n_batches} batches" .format(epoch=epoch, iteration=iteration, n_batches=len(batches))) avg_train_loss = avg_train_accuracy = 0. for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(model, keras.models.Graph): data = { 'input': x_train[batch_ids], 'output': y_train_one_hot[batch_ids] } train_loss = model.train_on_batch( data, class_weight=class_weight) train_accuracy = 0. else: train_loss, train_accuracy = model.train_on_batch( x_train[batch_ids], y_train_one_hot[batch_ids], accuracy=True, class_weight=class_weight) batch_end_logs = { 'loss': train_loss, 'accuracy': train_accuracy } avg_train_loss = (avg_train_loss * batch_index + train_loss) / (batch_index + 1) avg_train_accuracy = (avg_train_accuracy * batch_index + train_accuracy) / (batch_index + 1) callbacks.on_batch_end(batch, logs={ 'loss': train_loss, 'accuracy': train_accuracy }) logging.info( "epoch {epoch} iteration {iteration} - finished {n_batches} batches" .format(epoch=epoch, iteration=iteration, n_batches=len(batches))) logging.info( "epoch {epoch} iteration {iteration} - loss: {loss} - acc: {acc}" .format(epoch=epoch, iteration=iteration, loss=avg_train_loss, acc=avg_train_accuracy)) batch += 1 # Validation frequency (this if-block) doesn't necessarily # occur in the same iteration as beginning of an epoch # (next if-block), so model.evaluate appears twice here. if (iteration + 1) % args.validation_freq == 0: val_loss, val_acc = model.evaluate( x_validation, y_validation_one_hot, show_accuracy=True, verbose=0 if args.log else 1) logging.info( "epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}" .format(epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = { 'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc } callbacks.on_epoch_end(epoch, epoch_end_logs) if batch % len(args.extra_train_file) == 0: val_loss, val_acc = model.evaluate( x_validation, y_validation_one_hot, show_accuracy=True, verbose=0 if args.log else 1) logging.info( "epoch {epoch} iteration {iteration} - val_loss: {val_loss} - val_acc: {val_acc}" .format(epoch=epoch, iteration=iteration, val_loss=val_loss, val_acc=val_acc)) epoch_end_logs = { 'iteration': iteration, 'val_loss': val_loss, 'val_acc': val_acc } epoch += 1 callbacks.on_epoch_end(epoch, epoch_end_logs) if model.stop_training: logging.info( "epoch {epoch} iteration {iteration} - done training". format(epoch=epoch, iteration=iteration)) break current_train = next(train_file_iter) x_train, y_train = load_model_data(current_train, args.data_name, args.target_name) y_train_one_hot = np_utils.to_categorical(y_train, n_classes) if epoch > args.n_epochs: break callbacks.on_train_end(logs={}) else: print('args.n_epochs', args.n_epochs) if isinstance(model, keras.models.Graph): data = {'input': x_train, 'output': y_train_one_hot} validation_data = { 'input': x_validation, 'output': y_validation_one_hot } model.fit( data, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, #show_accuracy=True, validation_data=validation_data, callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1) y_hat = model.predict_classes(data) print('val_acc %.04f' % accuracy_score(y_validate, y_hat)) else: model.fit(x_train, y_train_one_hot, shuffle=args.shuffle, nb_epoch=args.n_epochs, batch_size=model_cfg.batch_size, show_accuracy=True, validation_data=(x_validation, y_validation_one_hot), callbacks=callbacks, class_weight=class_weight, verbose=2 if args.log else 1)