def __init__(self, ts, data=0, weights=1.0): self.ts = ts self.weights = weights self.data = data self.calc = calc #DAECalc.DAECalc("__PC12_MA__","__dPC12_MA__","__d2PC12_MA__") BaseModel.__init__(self, len(ts) * 15, 91, "PC12_MA") #15 of 54 dVars, 91 Parameters self.calc.kwargs['max_steps'] = 5000
def get_st_embeds(args, dataset, config, lang, base_model=None): logger.info("***** Compute sentence embeddings for [%s] plain text dataset using the [%s] base_model *****", lang, "pre-trained" if base_model is None else "domain") if base_model is None: base_model = BaseModel.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config) base_model.to(args.device) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) st_embeds = None base_model.eval() for batch in eval_dataloader: batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2]} outputs = base_model(**inputs) pooled_outputs = outputs[1] st_embeds = pooled_outputs.detach() if st_embeds is None else torch.cat((st_embeds, pooled_outputs.detach()), dim=0) # dataset_len x hidden_size return st_embeds
def get_init_domain_embed(args, dataset, lang): config = BertConfig.from_pretrained(args.model_name_or_path) base_model = BaseModel.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config) base_model.to(args.device) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # compute logits for the dataset using the model! logger.info( "***** Compute logits for [%s] dataset using the base_model *****", lang) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) st_embeds = None base_model.eval() for batch in eval_dataloader: batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2] } outputs = base_model(**inputs) pooled_outputs = outputs[1] st_embeds = pooled_outputs.detach( ) if st_embeds is None else torch.cat( (st_embeds, pooled_outputs.detach()), dim=0) # dataset_len x hidden_size return st_embeds
def __init__(self, N): BaseModel.__init__(self, N, N, "%i Parameter Exponential" % N)
def __init__(self, weights): self.weights = weights BaseModel.__init__(self, 22, 70, "MMPrior")
def __init__(self, x0=1, weights=25.0): self.x0 = x0 self.weights = weights BaseModel.__init__(self, 70, 70, "LinearPrior")
def __init__(self, x0): self.x0 = x0 # x0 contains the default values for the experiment BaseModel.__init__(self, 91, 70, "Expt")
def __init__(self, ts, weights = 1.0): self.ts = ts self.weights = weights self.calc = calc #DAECalc.DAECalc("__PC12_MA__","__dPC12_MA__","__d2PC12_MA__") BaseModel.__init__(self,len(ts) * 54, 91, "PC12_MA") #54 (not 51) dVars, 91(21+70, not 21+64=85) Parameters self.calc.kwargs['max_steps']=5000