def __init__(self, config_path): super().__init__(config_path) # self.bert_ranker = VanillaBertRanker() self.topk = 20 self.attention = modeling_util.Attention(self.ATTEN_SIZE) # combine+transform # self.transform = torch.nn.Linear(self.BERT_SIZE,self.ATTEN_SIZE)#combine+transform # self.transform_ent = torch.nn.Linear(self.ENTITY_SIZE,self.ATTEN_SIZE)#combine+transform self.linear = torch.nn.Linear(self.topk, 1) self.out = torch.nn.Linear(1, 1)
def __init__(self,QLEN): super().__init__(QLEN) # self.bert_ranker = VanillaBertRanker() self.topk = 20 self.BERT_SIZE = 768 self.attention = modeling_util.Attention(self.BERT_SIZE) self.linear = torch.nn.Linear(self.topk,1) self.out = torch.nn.Linear(13,1)
def __init__(self, config): super().__init__(config) #self.bert_ranker = VanillaBertRanker() self.topk = 20 # self.BERT_SIZE = 768 # self.ATTEN_SIZE = 500 self.attention = modeling_util.Attention( self.ATTEN_SIZE) #combine+transform self.linear = torch.nn.Linear(self.topk, 1) self.out = torch.nn.Linear(self.BERT_SIZE + 13, 1)
def __init__(self, config): super().__init__(config) #self.bert_ranker = VanillaBertRanker() self.topk = 20 self.BERT_SIZE = 768 self.ENTITY_SIZE = 100 self.attention = modeling_util.Attention(self.BERT_SIZE + self.ENTITY_SIZE) self.transform = torch.nn.Linear(self.BERT_SIZE + self.ENTITY_SIZE, self.BERT_SIZE + self.ENTITY_SIZE) self.linear = torch.nn.Linear(self.topk, 1) self.dropout = torch.nn.Dropout(0.1) self.out = torch.nn.Linear(self.BERT_SIZE + 13, 1) # combine+transform