Пример #1
0
 def get_feed_dict(self, corpus, data, batch_start, batch_size, phase):
     feed_dict = BPR.get_feed_dict(self, corpus, data, batch_start,
                                   batch_size, phase)
     real_batch_size = feed_dict['batch_size']
     times = data['time'][batch_start:batch_start + real_batch_size].values
     time_ids = (times - self.min_time) // self.time_bin_width
     feed_dict['time_id'] = utils.numpy_to_torch(time_ids).long()
     return feed_dict
Пример #2
0
 def parse_model_args(parser):
     parser.add_argument('--layers',
                         type=str,
                         default='[64]',
                         help="Size of each layer.")
     return BPR.parse_model_args(parser)
Пример #3
0
 def parse_model_args(parser):
     parser.add_argument('--time_bin',
                         type=int,
                         default=100,
                         help='Number of time bins.')
     return BPR.parse_model_args(parser)
Пример #4
0
 def _define_params(self):
     BPR._define_params(self)
     self.u_t_embeddings = torch.nn.Embedding(self.time_bin, self.emb_size)
     self.i_t_embeddings = torch.nn.Embedding(self.time_bin, self.emb_size)
     self.embeddings.extend(['u_t_embeddings', 'i_t_embeddings'])
Пример #5
0
 def __init__(self, args, corpus):
     self.time_bin = args.time_bin
     self.min_time = corpus.min_time
     self.time_bin_width = (corpus.max_time - self.min_time +
                            1.) / self.time_bin
     BPR.__init__(self, args, corpus)
Пример #6
0
# -*- coding: utf-8 -*-

from models.BPR import BPR
from readers.naisdataloader import Dataloader
from configs.config import Config

config = Config()
dl = Dataloader(config)
bpr = BPR(config, dl)
bpr.train_and_evaluate()
          
          
Пример #7
0
 def __init__(self, args, corpus):
     self.layers = eval(args.layers)
     self.dropout = args.dropout
     BPR.__init__(self, args, corpus)