Пример #1
0
def get_final_text(pred_text, orig_text, do_lower_case):
  """Project the tokenized prediction back to the original text."""

  # When we created the data, we kept track of the alignment between original
  # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
  # now `orig_text` contains the span of our original text corresponding to the
  # span that we predicted.
  #
  # However, `orig_text` may contain extra characters that we don't want in
  # our prediction.
  #
  # For example, let's say:
  #   pred_text = steve smith
  #   orig_text = Steve Smith's
  #
  # We don't want to return `orig_text` because it contains the extra "'s".
  #
  # We don't want to return `pred_text` because it's already been normalized
  # (the SQuAD eval script also does punctuation stripping/lower casing but
  # our tokenizer does additional normalization like stripping accent
  # characters).
  #
  # What we really want to return is "Steve Smith".
  #
  # Therefore, we have to apply a semi-complicated alignment heruistic between
  # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
  # can fail in certain cases in which case we just return `orig_text`.

  def _strip_spaces(text):
    ns_chars = []
    ns_to_s_map = collections.OrderedDict()
    for (i, c) in enumerate(text):
      if c == " ":
        continue
      ns_to_s_map[len(ns_chars)] = i
      ns_chars.append(c)
    ns_text = "".join(ns_chars)
    return (ns_text, ns_to_s_map)

  # We first tokenize `orig_text`, strip whitespace from the result
  # and `pred_text`, and check if they are the same length. If they are
  # NOT the same length, the heuristic has failed. If they are the same
  # length, we assume the characters are one-to-one aligned.
  tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

  tok_text = " ".join(tokenizer.tokenize(orig_text))

  start_position = tok_text.find(pred_text)
  if start_position == -1:
    return orig_text
  end_position = start_position + len(pred_text) - 1

  (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
  (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

  if len(orig_ns_text) != len(tok_ns_text):
    return orig_text

  # We then project the characters in `pred_text` back to `orig_text` using
  # the character-to-character alignment.
  tok_s_to_ns_map = {}
  for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
    tok_s_to_ns_map[tok_index] = i

  orig_start_position = None
  if start_position in tok_s_to_ns_map:
    ns_start_position = tok_s_to_ns_map[start_position]
    if ns_start_position in orig_ns_to_s_map:
      orig_start_position = orig_ns_to_s_map[ns_start_position]

  if orig_start_position is None:
    return orig_text

  orig_end_position = None
  if end_position in tok_s_to_ns_map:
    ns_end_position = tok_s_to_ns_map[end_position]
    if ns_end_position in orig_ns_to_s_map:
      orig_end_position = orig_ns_to_s_map[ns_end_position]

  if orig_end_position is None:
    return orig_text

  output_text = orig_text[orig_start_position:(orig_end_position + 1)]
  return output_text
Пример #2
0
    def test_basic_tokenizer_lower(self):
        tokenizer = tokenization.BasicTokenizer(do_lower_case=True)

        self.assertAllEqual(tokenizer.tokenize(u" \tHeLLo!how  \n Are yoU?  "),
                            ["hello", "!", "how", "are", "you", "?"])
        self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
Пример #3
0
    def test_basic_tokenizer_no_lower(self):
        tokenizer = tokenization.BasicTokenizer(do_lower_case=False)

        self.assertAllEqual(tokenizer.tokenize(u" \tHeLLo!how  \n Are yoU?  "),
                            ["HeLLo", "!", "how", "Are", "yoU", "?"])
Пример #4
0
    def test_chinese(self):
        tokenizer = tokenization.BasicTokenizer()

        self.assertAllEqual(tokenizer.tokenize(u"ah\u535A\u63A8zz"),
                            [u"ah", u"\u535A", u"\u63A8", u"zz"])