Пример #1
0
    def __getitem__(self, key):
        """ Get a batch with index. """
        if not isinstance(key, int):
            raise TypeError
        if key < 0:  # or key % len(self.data):
            raise IndexError
        key = key % len(self.data)
        batch = self.data[key]
        batch_size = len(batch)
        batch = list(zip(*batch))
        assert len(batch) == 4

        # sort sentences by lens for easy RNN operations
        sentlens = [len(x) for x in batch[2]]
        batch, orig_idx = sort_all(batch, sentlens)
        sentlens = [len(x) for x in batch[2]]

        words = get_long_tensor(batch[2], batch_size)
        words_mask = torch.eq(words, PAD_ID)
        # convert to tensors
        tokens_phobert = batch[0]
        tokens_phobert = get_long_tensor(tokens_phobert, batch_size, pad_id=1)
        first_subword = batch[1]
        first_subword = get_long_tensor(first_subword, batch_size)
        tags = get_long_tensor(batch[3], batch_size)
        return tokens_phobert, first_subword, words_mask, tags, orig_idx, sentlens
Пример #2
0
    def __getitem__(self, key):
        """ Get a batch with index. """
        if not isinstance(key, int):
            raise TypeError
        if key > 0 and key % len(self.data_dep) == 0:
            self.reshuffle()
        dep_key = key % len(self.data_dep)
        dep_batch = self.data_dep[dep_key]
        dep_batch_size = len(dep_batch)
        dep_batch = list(zip(*dep_batch))

        assert len(dep_batch) == 6

        dep_lens = [len(x) for x in dep_batch[2]]
        dep_batch, dep_orig_idx = sort_all(dep_batch, dep_lens)

        dep_batch_words = [w for sent in dep_batch[3] for w in sent]
        dep_word_lens = [len(x) for x in dep_batch_words]
        dep_batch_words, dep_word_orig_idx = sort_all([dep_batch_words],
                                                      dep_word_lens)
        dep_batch_words = dep_batch_words[
            0]  # [word1,...], word1 = list of tokens
        dep_word_lens = [len(x) for x in dep_batch_words]
        dep_wordchars = get_long_tensor(dep_batch_words, len(dep_word_lens))
        dep_number_of_words = dep_wordchars.size(0)
        dep_words = dep_batch[2]
        dep_words = get_long_tensor(dep_words, dep_batch_size)
        dep_words_mask = torch.eq(dep_words, PAD_ID)

        # convert to tensors
        dep_tokens_phobert = dep_batch[0]
        dep_tokens_phobert = get_long_tensor(dep_tokens_phobert,
                                             dep_batch_size,
                                             pad_id=1)
        dep_first_subword = dep_batch[1]
        dep_first_subword = get_long_tensor(dep_first_subword, dep_batch_size)
        dep_sentlens = [len(x) for x in dep_batch[1]]
        dep_head = get_long_tensor(dep_batch[4], dep_batch_size)
        dep_deprel = get_long_tensor(dep_batch[5], dep_batch_size)
        dep_data = (dep_tokens_phobert, dep_first_subword, dep_words_mask,
                    dep_head, dep_deprel, dep_number_of_words, dep_orig_idx,
                    dep_sentlens)
        return dep_data
Пример #3
0
    def chunk_batches(self, data):
        res = []
        if not self.eval:
            # sort sentences (roughly) by length for better memory utilization
            data = sorted(data,
                          key=lambda x: len(x[2]),
                          reverse=random.random() > .5)
        elif self.sort_during_eval:
            (data, ), self.data_orig_idx_dep = sort_all(
                [data], [len(x[2]) for x in data])
        current = []
        for x in data:
            if len(current) >= self.batch_size:
                res.append(current)
                current = []
            current.append(x)

        if len(current) > 0:
            res.append(current)
        return res  ##list of list by sentences of list by token
Пример #4
0
    def __getitem__(self, key):
        """ Get a batch with index. """
        if not isinstance(key, int):
            raise TypeError
        if key > 0 and key % len(self.data) == 0:
            self.reshuffle()
        batch_key = key % len(self.data)
        batch = self.data[batch_key]
        batch_size = len(batch)
        batch = list(zip(*batch))
        assert len(batch) == 3

        lens = [len(x) for x in batch[2]]
        batch, orig_idx = sort_all(batch, lens)

        # convert to tensors
        tokens_phobert = batch[0]
        tokens_phobert = get_long_tensor(tokens_phobert, batch_size, pad_id=1)
        first_subword = batch[1]
        first_subword = get_long_tensor(first_subword, batch_size)
        upos = get_long_tensor(batch[2], batch_size)
        sentlens = [len(x) for x in batch[1]]
        return tokens_phobert, first_subword, upos, orig_idx, sentlens