def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebAWithAttrLoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny()
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = AAE([img_height, img_width, 3],
                args.z_dim,
                encoder=encoder,
                decoder=decoder,
                discriminator_z=disc_z,
                rec_x_mode=args.rec_x_mode,
                stochastic_z=args.stochastic_z,
                use_gp0_z=True,
                gp0_z_mode=args.gp0_z_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'G_loss_z1_gen': args.G_loss_z1_gen_coeff,
        'D_loss_z1_gen': args.D_loss_z1_gen_coeff,
        'gp0_z': args.gp0_z_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # save_dir = remove_dir_if_exist(join(args.save_dir, "AAE_{}".format(args.run)), ask_4_permission=False)
    # save_dir = make_dir_if_not_exist(save_dir)

    save_dir = make_dir_if_not_exist(
        join(args.save_dir, "AAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan,
                        linewidth=1000,
                        precision=3,
                        suppress=True)

    num_bins = args.num_bins
    bin_limits = tuple([float(s) for s in args.bin_limits.split(";")])
    data_proportion = args.data_proportion
    num_data = int(data_proportion * celebA_loader.num_train_data)
    eps = 1e-8

    # file
    f = open(join(
        save_dir, 'log[bins={},bin_limits={},data={}].txt'.format(
            num_bins, bin_limits, data_proportion)),
             mode='w')

    # print function
    print_ = functools.partial(print_both, file=f)
    '''
    if attr_type == 0:
        attr_names = celebA_loader.attributes
    elif attr_type == 1:
        attr_names = ['Male', 'Black_Hair', 'Blond_Hair', 'Straight_Hair', 'Wavy_Hair', 'Bald',
                      'Oval_Face', 'Big_Nose', 'Chubby', 'Double_Chin', 'Goatee', 'No_Beard',
                      'Mouth_Slightly_Open', 'Smiling',
                      'Eyeglasses', 'Pale_Skin']
    else:
        raise ValueError("Only support factor_type=0 or 1!")
    '''

    print_("num_bins: {}".format(num_bins))
    print_("bin_limits: {}".format(bin_limits))
    print_("data_proportion: {}".format(data_proportion))

    # Compute bins
    # ================================= #
    print_("")
    print_("bin_limits: {}".format(bin_limits))
    assert len(bin_limits) == 2 and bin_limits[0] < bin_limits[
        1], "bin_limits={}".format(bin_limits)

    bins = np.linspace(bin_limits[0],
                       bin_limits[1],
                       num_bins + 1,
                       endpoint=True)
    print_("bins: {}".format(bins))
    assert len(bins) == num_bins + 1

    bin_widths = [bins[b] - bins[b - 1] for b in range(1, len(bins))]
    print_("bin_widths: {}".format(bin_widths))
    assert len(bin_widths
               ) == num_bins, "len(bin_widths)={} while num_bins={}!".format(
                   len(bin_widths), num_bins)
    assert np.all(np.greater(bin_widths,
                             0)), "bin_widths: {}".format(bin_widths)

    bin_centers = [(bins[b] + bins[b - 1]) * 0.5 for b in range(1, len(bins))]
    print_("bin_centers: {}".format(bin_centers))
    assert len(bin_centers
               ) == num_bins, "len(bin_centers)={} while num_bins={}!".format(
                   len(bin_centers), num_bins)
    # ================================= #

    # Compute representations
    # ================================= #
    z_data_attr_file = join(save_dir,
                            "z_data[data={}].npz".format(data_proportion))

    if not exists(z_data_attr_file):
        all_z_mean = []
        all_z_stddev = []
        all_attrs = []

        print("")
        print("Compute all_z_mean, all_z_stddev and all_attrs!")

        count = 0
        for batch_ids in iterate_data(num_data,
                                      10 * args.batch_size,
                                      shuffle=False):
            x = celebA_loader.sample_images_from_dataset(
                sess, 'train', batch_ids)
            attrs = celebA_loader.sample_attrs_from_dataset('train', batch_ids)
            assert attrs.shape[1] == celebA_loader.num_attributes

            z_mean, z_stddev = sess.run(model.get_output(
                ['z_mean', 'z_stddev']),
                                        feed_dict={
                                            model.is_train: False,
                                            model.x_ph: x
                                        })

            all_z_mean.append(z_mean)
            all_z_stddev.append(z_stddev)
            all_attrs.append(attrs)

            count += len(batch_ids)
            print("\rProcessed {} samples!".format(count), end="")
        print()

        all_z_mean = np.concatenate(all_z_mean, axis=0)
        all_z_stddev = np.concatenate(all_z_stddev, axis=0)
        all_attrs = np.concatenate(all_attrs, axis=0)

        np.savez_compressed(z_data_attr_file,
                            all_z_mean=all_z_mean,
                            all_z_stddev=all_z_stddev,
                            all_attrs=all_attrs)
    else:
        print("{} exists. Load data from file!".format(z_data_attr_file))
        with np.load(z_data_attr_file, "r") as f:
            all_z_mean = f['all_z_mean']
            all_z_stddev = f['all_z_stddev']
            all_attrs = f['all_attrs']

    print_("")
    print_("all_z_mean.shape: {}".format(all_z_mean.shape))
    print_("all_z_stddev.shape: {}".format(all_z_stddev.shape))
    print_("all_attrs.shape: {}".format(all_attrs.shape))
    # ================================= #

    # Compute the probability mass function for ground truth factors
    # ================================= #
    num_attrs = all_attrs.shape[1]

    assert all_attrs.dtype == np.bool
    all_attrs = all_attrs.astype(np.int32)

    # (num_samples, num_attrs, 2)    # The first component is 1 and the last component is 0
    all_Q_y_cond_x = np.stack([all_attrs, 1 - all_attrs], axis=-1)
    # ================================= #

    # Compute Q(zi|x)
    # Compute I(zi, yk)
    # ================================= #
    Q_z_y = np.zeros([args.z_dim, num_attrs, num_bins, 2], dtype=np.float32)
    MI_z_y = np.zeros([args.z_dim, num_attrs], dtype=np.float32)
    H_z_y = np.zeros([args.z_dim, num_attrs], dtype=np.float32)
    H_z_4_diff_y = np.zeros([args.z_dim, num_attrs], dtype=np.float32)
    H_y_4_diff_z = np.zeros([num_attrs, args.z_dim], dtype=np.float32)

    for i in range(args.z_dim):
        print_("")
        print_("Compute all_Q_z{}_cond_x!".format(i))

        # Q_s_cond_x
        all_Q_s_cond_x = []
        for batch_ids in iterate_data(len(all_z_mean),
                                      500,
                                      shuffle=False,
                                      include_remaining=True):
            # (batch_size, num_bins)
            q_s_cond_x = normal_density(
                np.expand_dims(bin_centers, axis=0),
                mean=np.expand_dims(all_z_mean[batch_ids, i], axis=-1),
                stddev=np.expand_dims(all_z_stddev[batch_ids, i], axis=-1))

            # (batch_size, num_bins)
            max_q_s_cond_x = np.max(q_s_cond_x, axis=-1)
            # print("\nmax_q_s_cond_x: {}".format(np.sort(max_q_s_cond_x)))

            # (batch_size, num_bins)
            deter_s_cond_x = at_bin(all_z_mean[batch_ids, i],
                                    bins).astype(np.float32)

            # (batch_size, num_bins)
            Q_s_cond_x = q_s_cond_x * np.expand_dims(bin_widths, axis=0)
            Q_s_cond_x = Q_s_cond_x / np.maximum(
                np.sum(Q_s_cond_x, axis=1, keepdims=True), eps)
            # print("sort(sum(Q_s_cond_x)) (before): {}".format(np.sort(np.sum(Q_s_cond_x, axis=-1))))

            Q_s_cond_x = np.where(
                np.expand_dims(np.less(max_q_s_cond_x, 1e-5), axis=-1),
                deter_s_cond_x, Q_s_cond_x)
            # print("sort(sum(Q_s_cond_x)) (after): {}".format(np.sort(np.sum(Q_s_cond_x, axis=-1))))

            all_Q_s_cond_x.append(Q_s_cond_x)

        # (num_samples, num_bins)
        all_Q_s_cond_x = np.concatenate(all_Q_s_cond_x, axis=0)
        assert np.all(all_Q_s_cond_x >= 0), "'all_Q_s_cond_x' contains negative values. " \
                                            "sorted_all_Q_s_cond_x[:30]:\n{}!".format(
            np.sort(all_Q_s_cond_x[:30], axis=None))

        assert len(all_Q_s_cond_x) == len(
            all_attrs), "all_Q_s_cond_x.shape={}, all_attrs.shape={}".format(
                all_Q_s_cond_x.shape, all_attrs.shape)

        # I(z, y)
        for k in range(num_attrs):
            # Compute Q(zi, yk)
            # -------------------------------- #
            # (z_dim, 2)
            Q_zi_yk = np.matmul(np.transpose(all_Q_s_cond_x, axes=[1, 0]),
                                all_Q_y_cond_x[:, k, :])
            Q_zi_yk = Q_zi_yk / len(all_Q_y_cond_x)
            Q_zi_yk = Q_zi_yk / np.maximum(np.sum(Q_zi_yk), eps)

            assert np.all(Q_zi_yk >= 0), "'Q_zi_yk' contains negative values. " \
                "sorted_Q_zi_yk[:10]:\n{}!".format(np.sort(Q_zi_yk, axis=None))

            log_Q_zi_yk = np.log(np.clip(Q_zi_yk, eps, 1 - eps))

            Q_z_y[i, k] = Q_zi_yk
            print_("sum(Q_zi_yk): {}".format(np.sum(Q_zi_yk)))
            # -------------------------------- #

            # Compute Q_z
            # -------------------------------- #
            Q_zi = np.sum(Q_zi_yk, axis=1)
            log_Q_zi = np.log(np.clip(Q_zi, eps, 1 - eps))
            print_("sum(Q_z{}): {}".format(i, np.sum(Q_zi)))
            print_("Q_z{}: {}".format(i, Q_zi))
            # -------------------------------- #

            # Compute Q_y
            # -------------------------------- #
            Q_yk = np.sum(Q_zi_yk, axis=0)
            log_Q_yk = np.log(np.clip(Q_yk, eps, 1 - eps))
            print_("sum(Q_y{}): {}".format(k, np.sum(Q_yk)))
            print_("Q_y{}: {}".format(k, np.sum(Q_yk)))
            # -------------------------------- #

            MI_zi_yk = Q_zi_yk * (log_Q_zi_yk - np.expand_dims(
                log_Q_zi, axis=-1) - np.expand_dims(log_Q_yk, axis=0))

            MI_zi_yk = np.sum(MI_zi_yk)
            H_zi_yk = -np.sum(Q_zi_yk * log_Q_zi_yk)
            H_zi = -np.sum(Q_zi * log_Q_zi)
            H_yk = -np.sum(Q_yk * log_Q_yk)

            MI_z_y[i, k] = MI_zi_yk
            H_z_y[i, k] = H_zi_yk
            H_z_4_diff_y[i, k] = H_zi
            H_y_4_diff_z[k, i] = H_yk
    # ================================= #

    print_("")
    print_("MI_z_y:\n{}".format(MI_z_y))
    print_("H_z_y:\n{}".format(H_z_y))
    print_("H_z_4_diff_y:\n{}".format(H_z_4_diff_y))
    print_("H_y_4_diff_z:\n{}".format(H_y_4_diff_z))

    # Compute metric
    # ================================= #
    # Sorted in decreasing order
    MI_ids_sorted = np.argsort(MI_z_y, axis=0)[::-1]
    MI_sorted = np.take_along_axis(MI_z_y, MI_ids_sorted, axis=0)

    MI_gap_y = np.divide(MI_sorted[0, :] - MI_sorted[1, :], H_y_4_diff_z[:, 0])
    MIG = np.mean(MI_gap_y)

    print_("")
    print_("MI_sorted: {}".format(MI_sorted))
    print_("MI_ids_sorted: {}".format(MI_ids_sorted))
    print_("MI_gap_y: {}".format(MI_gap_y))
    print_("MIG: {}".format(MIG))

    results = {
        'Q_z_y': Q_z_y,
        'MI_z_y': MI_z_y,
        'H_z_y': H_z_y,
        'H_z_4_diff_y': H_z_4_diff_y,
        'H_y_4_diff_z': H_y_4_diff_z,
        'MI_sorted': MI_sorted,
        'MI_ids_sorted': MI_ids_sorted,
        'MI_gap_y': MI_gap_y,
        'MIG': MIG,
    }

    result_file = join(
        save_dir, 'results[bins={},bin_limits={},data={}].npz'.format(
            num_bins, bin_limits, data_proportion))
    np.savez_compressed(result_file, **results)
    # ================================= #

    f.close()
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebAWithAttrLoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))
    num_train = celebA_loader.num_train_data

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny()
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = AAE([img_height, img_width, 3],
                args.z_dim,
                encoder=encoder,
                decoder=decoder,
                discriminator_z=disc_z,
                rec_x_mode=args.rec_x_mode,
                stochastic_z=args.stochastic_z,
                use_gp0_z=True,
                gp0_z_mode=args.gp0_z_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'G_loss_z1_gen': args.G_loss_z1_gen_coeff,
        'D_loss_z1_gen': args.D_loss_z1_gen_coeff,
        'gp0_z': args.gp0_z_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # save_dir = remove_dir_if_exist(join(args.save_dir, "AAE_{}".format(args.run)), ask_4_permission=True)
    # save_dir = make_dir_if_not_exist(save_dir)

    save_dir = make_dir_if_not_exist(
        join(args.save_dir, "AAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan,
                        linewidth=1000,
                        precision=3,
                        suppress=True)

    num_bins = args.num_bins
    bin_limits = tuple([float(s) for s in args.bin_limits.split(";")])
    data_proportion = args.data_proportion

    f = open(join(
        save_dir, 'log[bins={},bin_limits={},data={}].txt'.format(
            num_bins, bin_limits, data_proportion)),
             mode='w')
    print_ = functools.partial(print_both, file=f)

    result_file = join(
        args.interpretability_metrics_dir, "AAE_{}".format(args.run),
        "results[bins={},bin_limits={},data={}].npz".format(
            num_bins, bin_limits, data_proportion))

    results = np.load(result_file, "r")

    print_("")
    print_("num_bins: {}".format(num_bins))
    print_("bin_limits: {}".format(bin_limits))
    print_("data_proportion: {}".format(data_proportion))

    # Plotting
    # =========================================== #
    # seed = 389
    # num_samples = 30
    seed = 398
    num_samples = 1

    ids = list(range(seed, seed + num_samples))
    print_("\nids: {}".format(ids))

    data = celebA_loader.sample_images_from_dataset(sess, 'train', ids)

    span = 3
    points_one_side = 5

    attr_names = celebA_loader.attributes
    print_("attr_names: {}".format(attr_names))
    print_("results.keys: {}".format(list(results.keys())))

    # (z_dim, num_attrs)
    MI_ids_sorted = results['MI_ids_sorted']
    MI_sorted = results['MI_sorted']

    MI_gap_y = results['MI_gap_y']
    H_y = results['H_y_4_diff_z'][:, 0]
    assert MI_ids_sorted.shape[1] == len(attr_names) == len(MI_gap_y) == len(H_y), \
        "MI_ids_sorted.shape: {}, len(attr_names): {}, len(MI_gap_y): {}, len(H_y): {}".format(
            MI_ids_sorted.shape, len(attr_names), len(MI_gap_y), len(H_y))

    print_("\nShow RMIG!")
    for i in range(len(attr_names)):
        print("{}: RMIG: {:.4f}, RMIG (unnorm): {:.4f}, H: {:.4f}".format(
            attr_names[i], MI_gap_y[i], MI_gap_y[i] * H_y[i], H_y[i]))

    print_("\nShow JEMMI!")
    H_z_y = results['H_z_y']
    MI_z_y = results['MI_z_y']

    ids_sorted_by_MI = np.argsort(MI_z_y, axis=0)[::-1]
    MI_z_y_sorted = np.take_along_axis(MI_z_y, ids_sorted_by_MI, axis=0)
    H_z_y_sorted = np.take_along_axis(H_z_y, ids_sorted_by_MI, axis=0)

    H_diff = H_z_y_sorted[0, :] - MI_z_y_sorted[0, :]
    JEMMI_unnorm = H_diff + MI_z_y_sorted[1, :]
    JEMMI_norm = JEMMI_unnorm / (np.log(num_bins) + H_y)

    for i in range(len(attr_names)):
        print(
            "{}: JEMMI: {:.4f}, JEMMI (unnorm): {:.4f}, H_diff: {:.4f}, I2: {:.4f}, top 2 latents: z{}, z{}"
            .format(attr_names[i], JEMMI_norm[i], JEMMI_unnorm[i], H_diff[i],
                    MI_z_y_sorted[1, i], ids_sorted_by_MI[0, i],
                    ids_sorted_by_MI[1, i]))

    # Uncomment if you want
    '''
    for n in range(len(ids)):
        for k in range(len(attr_names)):
            MI_ids_top10 = MI_ids_sorted[:10, k]
            MI_top10 = MI_sorted[:10, k]
            print("Plot top 10 latents for factor '{}'!".format(attr_names[k]))

            img_file = join(save_dir, "x_train[{}][attr={}][bins={},bin_limits={},data={}].png".
                            format(ids[n], attr_names[k], num_bins, bin_limits, data_proportion))

            model.cond_all_latents_traverse_v2(img_file, sess, data[n],
                                               z_comps=MI_ids_top10,
                                               z_comp_labels=["z[{}] ({:.4f})".format(comp, mi)
                                                              for comp, mi in zip(MI_ids_top10, MI_top10)],
                                               span=span, points_1_side=points_one_side,
                                               hl_x=True,
                                               font_size=9,
                                               title="{} (MI gap={:.4f}, H={:.4f})".format(
                                                   attr_names[k], MI_gap_y[k], H_y[k]),
                                               title_font_scale=1.5,
                                               subplot_adjust={'left': 0.16, 'right': 0.99,
                                                               'bottom': 0.01, 'top': 0.95},
                                               size_inches=(6.5, 5.2),
                                               batch_size=args.batch_size,
                                               dec_output_2_img_func=binary_float_to_uint8)
    '''

    # Top 5 only
    for n in range(len(ids)):
        for k in range(len(attr_names)):
            MI_ids_top10 = MI_ids_sorted[:5, k]
            MI_top10 = MI_sorted[:5, k]
            print("Plot top 5 latents for factor '{}'!".format(attr_names[k]))

            img_file = join(
                save_dir, "train{}_attr={}_bins={}_data={}.png".format(
                    ids[n], attr_names[k], num_bins, data_proportion))

            model.cond_all_latents_traverse_v2(
                img_file,
                sess,
                data[n],
                z_comps=MI_ids_top10,
                z_comp_labels=[
                    "z[{}] ({:.4f})".format(comp, mi)
                    for comp, mi in zip(MI_ids_top10, MI_top10)
                ],
                span=span,
                points_1_side=points_one_side,
                hl_x=True,
                font_size=9,
                title="{} (MI gap={:.4f}, H={:.4f})".format(
                    attr_names[k], MI_gap_y[k], H_y[k]),
                title_font_scale=1.5,
                subplot_adjust={
                    'left': 0.16,
                    'right': 0.99,
                    'bottom': 0.005,
                    'top': 0.93
                },
                size_inches=(6.5, 2.8),
                batch_size=args.batch_size,
                dec_output_2_img_func=binary_float_to_uint8)
    '''
Пример #3
0
def main(args):
    # =====================================
    # Preparation
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)
    num_train = celebA_loader.num_train_data
    num_test = celebA_loader.num_test_data

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))

    args.output_dir = os.path.join(args.output_dir, args.enc_dec_model,
                                   args.run)

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    else:
        if args.force_rm_dir:
            import shutil
            shutil.rmtree(args.output_dir, ignore_errors=True)
            print("Removed '{}'".format(args.output_dir))
        else:
            raise ValueError("Output directory '{}' existed. 'force_rm_dir' "
                             "must be set to True!".format(args.output_dir))
        os.mkdir(args.output_dir)

    save_args(os.path.join(args.output_dir, 'config.json'), args)
    # pp.pprint(args.__dict__)

    # =====================================
    # Instantiate models
    # =====================================
    # Only use activation for encoder and decoder
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3],
                      args.z_dim,
                      encoder=encoder,
                      decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True,
                      gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'Dz_tc_loss': args.Dz_tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_list()

    loss = model.get_loss()
    train_params = model.get_train_params()

    opt_Dz = tf.train.AdamOptimizer(learning_rate=args.lr_Dz,
                                    beta1=args.beta1_Dz,
                                    beta2=args.beta2_Dz)
    opt_vae = tf.train.AdamOptimizer(learning_rate=args.lr_vae,
                                     beta1=args.beta1_vae,
                                     beta2=args.beta2_vae)

    with tf.control_dependencies(model.get_all_update_ops()):
        train_op_Dz = opt_Dz.minimize(loss=loss['Dz_loss'],
                                      var_list=train_params['Dz_loss'])
        train_op_D = train_op_Dz

        train_op_vae = opt_vae.minimize(loss=loss['vae_loss'],
                                        var_list=train_params['vae_loss'])

    # =====================================
    # TF Graph Handler
    asset_dir = make_dir_if_not_exist(os.path.join(args.output_dir, "asset"))
    img_gen_dir = make_dir_if_not_exist(os.path.join(asset_dir, "img_gen"))
    img_rec_dir = make_dir_if_not_exist(os.path.join(asset_dir, "img_rec"))
    img_itpl_dir = make_dir_if_not_exist(os.path.join(asset_dir, "img_itpl"))

    log_dir = make_dir_if_not_exist(os.path.join(args.output_dir, "log"))
    train_log_file = os.path.join(log_dir, "train.log")

    summary_dir = make_dir_if_not_exist(
        os.path.join(args.output_dir, "summary_tf"))
    model_dir = make_dir_if_not_exist(os.path.join(args.output_dir,
                                                   "model_tf"))

    train_helper = SimpleTrainHelper(
        log_dir=summary_dir,
        save_dir=model_dir,
        max_to_keep=3,
        max_to_keep_best=1,
    )
    # =====================================

    # =====================================
    # Training Loop
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)
    train_helper.initialize(sess,
                            init_variables=True,
                            create_summary_writer=True)

    Dz_fetch_keys = [
        'Dz_loss', 'Dz_tc_loss', 'Dz_loss_normal', 'Dz_loss_factor',
        'Dz_avg_prob_normal', 'Dz_avg_prob_factor', 'gp0_z_tc'
    ]
    D_fetch_keys = Dz_fetch_keys
    vae_fetch_keys = ['vae_loss', 'rec_x', 'kld_loss', 'tc_loss']

    train_sampler = ContinuousIndexSampler(num_train,
                                           args.batch_size,
                                           shuffle=True)

    import math
    num_batch_per_epochs = int(math.ceil(num_train / args.batch_size))

    global_step = 0
    for epoch in range(args.epochs):
        for _ in range(num_batch_per_epochs):
            global_step += 1

            batch_ids = train_sampler.sample_ids()
            x = celebA_loader.sample_images_from_dataset(
                sess, 'train', batch_ids)

            z = np.random.randn(len(x), args.z_dim)

            batch_ids_2 = np.random.choice(num_train, size=len(batch_ids))
            xa = celebA_loader.sample_images_from_dataset(
                sess, 'train', batch_ids_2)

            for i in range(args.D_steps):
                _, Dm = sess.run(
                    [train_op_D,
                     model.get_output(D_fetch_keys, as_dict=True)],
                    feed_dict={
                        model.is_train: True,
                        model.x_ph: x,
                        model.z_ph: z,
                        model.xa_ph: xa
                    })

            for i in range(args.vae_steps):
                _, VAEm = sess.run(
                    [
                        train_op_vae,
                        model.get_output(vae_fetch_keys, as_dict=True)
                    ],
                    feed_dict={
                        model.is_train: True,
                        model.x_ph: x,
                        model.z_ph: z,
                        model.xa_ph: xa
                    })

            if global_step % args.save_freq == 0:
                train_helper.save(sess, global_step)

            if global_step % args.log_freq == 0:
                log_str = "\n[FactorVAE (celebA)/{}, {}]".format(args.enc_dec_model, args.run) + \
                          "\nEpoch {}/{}, Step {}, vae_loss: {:.4f}, Dz_loss: {:.4f}, Dz_tc_loss: {:.4f}".format(
                              epoch, args.epochs, global_step, VAEm['vae_loss'], Dm['Dz_loss'], Dm['Dz_tc_loss']) + \
                          "\nrec_x: {:.4f}, kld_loss: {:.4f}, tc_loss: {:.4f}".format(
                              VAEm['rec_x'], VAEm['kld_loss'], VAEm['tc_loss']) + \
                          "\nDz_loss_normal: {:.4f}, Dz_loss_factor: {:.4f}".format(
                              Dm['Dz_loss_normal'], Dm['Dz_loss_factor']) + \
                          "\nDz_avg_prob_normal: {:.4f}, Dz_avg_prob_factor: {:.4f}".format(
                              Dm['Dz_avg_prob_normal'], Dm['Dz_avg_prob_factor']) + \
                          "\ngp0_z_tc_coeff: {:.4f}, gp0_z_tc: {:.4f}".format(args.gp0_z_tc_coeff, Dm['gp0_z_tc'])

                print(log_str)
                with open(train_log_file, "a") as f:
                    f.write(log_str)
                    f.write("\n")
                f.close()

                train_helper.add_summary(
                    custom_tf_scalar_summary('vae_loss',
                                             VAEm['vae_loss'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('rec_x',
                                             VAEm['rec_x'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('kld_loss',
                                             VAEm['kld_loss'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('tc_loss',
                                             VAEm['tc_loss'],
                                             prefix='train'), global_step)

                train_helper.add_summary(
                    custom_tf_scalar_summary('Dz_tc_loss',
                                             Dm['Dz_tc_loss'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('Dz_loss_normal',
                                             Dm['Dz_loss_normal'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('Dz_loss_factor',
                                             Dm['Dz_loss_factor'],
                                             prefix='train'), global_step)

                train_helper.add_summary(
                    custom_tf_scalar_summary('Dz_prob_normal',
                                             Dm['Dz_avg_prob_normal'],
                                             prefix='train'), global_step)
                train_helper.add_summary(
                    custom_tf_scalar_summary('Dz_prob_factor',
                                             Dm['Dz_avg_prob_factor'],
                                             prefix='train'), global_step)

            if global_step % args.viz_gen_freq == 0:
                # Generate images
                # ------------------------- #
                z = np.random.randn(64, args.z_dim)
                img_file = os.path.join(img_gen_dir,
                                        'step[%d]_gen_test.png' % global_step)

                model.generate_images(
                    img_file,
                    sess,
                    z,
                    block_shape=[8, 8],
                    batch_size=args.batch_size,
                    dec_output_2_img_func=binary_float_to_uint8)
                # ------------------------- #

            if global_step % args.viz_rec_freq == 0:
                # Reconstruct images
                # ------------------------- #
                x = celebA_loader.sample_images_from_dataset(
                    sess, 'test',
                    np.random.choice(num_test, size=64, replace=False))

                img_file = os.path.join(img_rec_dir,
                                        'step[%d]_rec_test.png' % global_step)

                model.reconstruct_images(
                    img_file,
                    sess,
                    x,
                    block_shape=[8, 8],
                    batch_size=args.batch_size,
                    dec_output_2_img_func=binary_float_to_uint8)
                # ------------------------- #

            if global_step % args.viz_itpl_freq == 0:
                # Interpolate images
                # ------------------------- #
                x1 = celebA_loader.sample_images_from_dataset(
                    sess, 'test',
                    np.random.choice(num_test, size=12, replace=False))
                x2 = celebA_loader.sample_images_from_dataset(
                    sess, 'test',
                    np.random.choice(num_test, size=12, replace=False))

                img_file = os.path.join(img_itpl_dir,
                                        'step[%d]_itpl_test.png' % global_step)

                model.interpolate_images(
                    img_file,
                    sess,
                    x1,
                    x2,
                    num_itpl_points=12,
                    batch_on_row=True,
                    batch_size=args.batch_size,
                    dec_output_2_img_func=binary_float_to_uint8)
                # ------------------------- #

        if epoch % 100 == 0:
            train_helper.save_separately(
                sess,
                model_name="model_epoch{}".format(epoch),
                global_step=global_step)

    # Last save
    train_helper.save(sess, global_step)
Пример #4
0
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebAWithAttrLoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny", resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim, stochastic=True, activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3], activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny()
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(args.enc_dec_model))

    model = AAE([img_height, img_width, 3], args.z_dim,
                encoder=encoder, decoder=decoder,
                discriminator_z=disc_z,
                rec_x_mode=args.rec_x_mode,
                stochastic_z=args.stochastic_z,
                use_gp0_z=True, gp0_z_mode=args.gp0_z_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'G_loss_z1_gen': args.G_loss_z1_gen_coeff,
        'D_loss_z1_gen': args.D_loss_z1_gen_coeff,
        'gp0_z': args.gp0_z_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # save_dir = remove_dir_if_exist(join(args.save_dir, "AAE_{}".format(args.run)), ask_4_permission=True)
    # save_dir = make_dir_if_not_exist(save_dir)

    save_dir = make_dir_if_not_exist(join(args.save_dir, "AAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan, linewidth=1000, precision=4, suppress=True)

    num_bins = args.num_bins
    bin_limits = tuple([float(s) for s in args.bin_limits.split(";")])
    data_proportion = args.data_proportion
    num_data = int(data_proportion * celebA_loader.num_train_data)
    eps = 1e-8

    # file
    f = open(join(save_dir, 'log[bins={},bin_limits={},data={}].txt'.
                  format(num_bins, bin_limits, data_proportion)), mode='w')

    # print function
    print_ = functools.partial(print_both, file=f)

    print_("num_bins: {}".format(num_bins))
    print_("bin_limits: {}".format(bin_limits))
    print_("data_proportion: {}".format(data_proportion))

    # Compute representations
    # ================================= #
    z_data_file = join(save_dir, "z_data[data={}].npz".format(data_proportion))

    if not exists(z_data_file):
        all_z_mean = []
        all_z_stddev = []

        print("")
        print("Compute all_z_mean and all_z_stddev!")
        count = 0
        for batch_ids in iterate_data(num_data, 10 * args.batch_size, shuffle=False):
            x = celebA_loader.sample_images_from_dataset(sess, 'train', batch_ids)

            z_mean, z_stddev = sess.run(
                model.get_output(['z_mean', 'z_stddev']),
                feed_dict={model.is_train: False, model.x_ph: x})

            all_z_mean.append(z_mean)
            all_z_stddev.append(z_stddev)

            count += len(batch_ids)
            print("\rProcessed {} samples!".format(count), end="")
        print()

        all_z_mean = np.concatenate(all_z_mean, axis=0)
        all_z_stddev = np.concatenate(all_z_stddev, axis=0)

        np.savez_compressed(z_data_file, all_z_mean=all_z_mean, all_z_stddev=all_z_stddev)
    else:
        print("{} exists. Load data from file!".format(z_data_file))
        with np.load(z_data_file, "r") as f:
            all_z_mean = f['all_z_mean']
            all_z_stddev = f['all_z_stddev']

    print_("")
    print_("all_z_mean.shape: {}".format(all_z_mean.shape))
    print_("all_z_stddev.shape: {}".format(all_z_stddev.shape))
    # ================================= #

    # Compute bins
    # ================================= #
    print_("")
    print_("bin_limits: {}".format(bin_limits))
    assert len(bin_limits) == 2 and bin_limits[0] < bin_limits[1], "bin_limits={}".format(bin_limits)

    bins = np.linspace(bin_limits[0], bin_limits[1], num_bins + 1, endpoint=True)
    print_("bins: {}".format(bins))
    assert len(bins) == num_bins + 1

    bin_widths = [bins[b] - bins[b - 1] for b in range(1, len(bins))]
    print_("bin_widths: {}".format(bin_widths))
    assert len(bin_widths) == num_bins, "len(bin_widths)={} while num_bins={}!".format(len(bin_widths), num_bins)
    assert np.all(np.greater(bin_widths, 0)), "bin_widths: {}".format(bin_widths)

    bin_centers = [(bins[b] + bins[b - 1]) * 0.5 for b in range(1, len(bins))]
    print_("bin_centers: {}".format(bin_centers))
    assert len(bin_centers) == num_bins, "len(bin_centers)={} while num_bins={}!".format(len(bin_centers), num_bins)
    # ================================= #

    # Compute mutual information
    # ================================= #
    H_z = []
    H_z_cond_x = []
    MI_z_x = []
    norm_MI_z_x = []
    Q_z_cond_x = []
    Q_z = []

    for i in range(args.z_dim):
        print_("")
        print_("Compute I(z{}, x)!".format(i))

        # Q_s_cond_x
        all_Q_s_cond_x = []
        for batch_ids in iterate_data(len(all_z_mean), 500, shuffle=False, include_remaining=True):
            # (batch_size, num_bins)
            q_s_cond_x = normal_density(np.expand_dims(bin_centers, axis=0),
                                        mean=np.expand_dims(all_z_mean[batch_ids, i], axis=-1),
                                        stddev=np.expand_dims(all_z_stddev[batch_ids, i], axis=-1))

            # (batch_size, num_bins)
            max_q_s_cond_x = np.max(q_s_cond_x, axis=-1)
            # print("\nmax_q_s_cond_x: {}".format(np.sort(max_q_s_cond_x)))

            # (batch_size, num_bins)
            deter_s_cond_x = at_bin(all_z_mean[batch_ids, i], bins).astype(np.float32)

            # (batch_size, num_bins)
            Q_s_cond_x = q_s_cond_x * np.expand_dims(bin_widths, axis=0)
            Q_s_cond_x = Q_s_cond_x / np.maximum(np.sum(Q_s_cond_x, axis=1, keepdims=True), eps)
            # print("sort(sum(Q_s_cond_x)) (before): {}".format(np.sort(np.sum(Q_s_cond_x, axis=-1))))

            Q_s_cond_x = np.where(np.expand_dims(np.less(max_q_s_cond_x, 1e-5), axis=-1),
                                  deter_s_cond_x, Q_s_cond_x)
            # print("sort(sum(Q_s_cond_x)) (after): {}".format(np.sort(np.sum(Q_s_cond_x, axis=-1))))

            all_Q_s_cond_x.append(Q_s_cond_x)

        all_Q_s_cond_x = np.concatenate(all_Q_s_cond_x, axis=0)
        print_("sort(sum(all_Q_s_cond_x))[:10]: {}".format(
            np.sort(np.sum(all_Q_s_cond_x, axis=-1), axis=0)[:100]))
        assert np.all(all_Q_s_cond_x >= 0), "'all_Q_s_cond_x' contains negative values. " \
            "sorted_all_Q_s_cond_x[:30]:\n{}!".format(np.sort(all_Q_s_cond_x[:30], axis=None))
        Q_z_cond_x.append(all_Q_s_cond_x)

        H_zi_cond_x = -np.mean(np.sum(all_Q_s_cond_x * np.log(np.maximum(all_Q_s_cond_x, eps)), axis=1), axis=0)

        # Q_s
        Q_s = np.mean(all_Q_s_cond_x, axis=0)
        print_("Q_s: {}".format(Q_s))
        print_("sum(Q_s): {}".format(sum(Q_s)))
        assert np.all(Q_s >= 0), "'Q_s' contains negative values. " \
            "sorted_Q_s[:10]:\n{}!".format(np.sort(Q_s, axis=None))

        Q_s = Q_s / np.sum(Q_s, axis=0)
        print_("sum(Q_s) (normalized): {}".format(sum(Q_s)))

        Q_z.append(Q_s)

        H_zi = -np.sum(Q_s * np.log(np.maximum(Q_s, eps)), axis=0)

        MI_zi_x = H_zi - H_zi_cond_x
        normalized_MI_zi_x = (1.0 * MI_zi_x) / (H_zi + eps)

        print_("H_zi: {}".format(H_zi))
        print_("H_zi_cond_x: {}".format(H_zi_cond_x))
        print_("MI_zi_x: {}".format(MI_zi_x))
        print_("normalized_MI_zi_x: {}".format(normalized_MI_zi_x))

        H_z.append(H_zi)
        H_z_cond_x.append(H_zi_cond_x)
        MI_z_x.append(MI_zi_x)
        norm_MI_z_x.append(normalized_MI_zi_x)

    H_z = np.asarray(H_z, dtype=np.float32)
    H_z_cond_x = np.asarray(H_z_cond_x, dtype=np.float32)
    MI_z_x = np.asarray(MI_z_x, dtype=np.float32)
    norm_MI_z_x = np.asarray(norm_MI_z_x, dtype=np.float32)

    print_("")
    print_("H_z: {}".format(H_z))
    print_("H_z_cond_x: {}".format(H_z_cond_x))
    print_("MI_z_x: {}".format(MI_z_x))
    print_("norm_MI_z_x: {}".format(norm_MI_z_x))

    sorted_z_comps = np.argsort(MI_z_x, axis=0)[::-1]
    sorted_MI_z_x = np.take_along_axis(MI_z_x, sorted_z_comps, axis=0)
    print_("sorted_MI_z_x: {}".format(sorted_MI_z_x))
    print_("sorted_z_comps: {}".format(sorted_z_comps))

    sorted_norm_z_comps = np.argsort(norm_MI_z_x, axis=0)[::-1]
    sorted_norm_MI_z_x = np.take_along_axis(norm_MI_z_x, sorted_norm_z_comps, axis=0)
    print_("sorted_norm_MI_z_x: {}".format(sorted_norm_MI_z_x))
    print_("sorted_norm_z_comps: {}".format(sorted_norm_z_comps))

    result_file = join(save_dir, 'results[bins={},bin_limits={},data={}].npz'.
                       format(num_bins, bin_limits, data_proportion))

    np.savez_compressed(result_file,
                        H_z=H_z, H_z_cond_x=H_z_cond_x, MI_z_x=MI_z_x, norm_MI_z_x=norm_MI_z_x,
                        sorted_MI_z_x=sorted_MI_z_x, sorted_z_comps=sorted_z_comps,
                        sorted_norm_MI_z_x=sorted_norm_MI_z_x,
                        sorted_norm_z_comps=sorted_norm_z_comps)

    Q_z_cond_x = np.asarray(Q_z_cond_x, dtype=np.float32)
    Q_z = np.asarray(Q_z, dtype=np.float32)
    z_prob_file = join(save_dir, 'z_prob[bins={},bin_limits={},data={}].npz'.
                       format(num_bins, bin_limits, data_proportion))
    np.savez_compressed(z_prob_file, Q_z_cond_x=Q_z_cond_x, Q_z=Q_z)
Пример #5
0
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny", resize_size=args.celebA_resize_size))
    num_train = celebA_loader.num_train_data

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim, stochastic=True, activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3], activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3], args.z_dim,
                      encoder=encoder, decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True, gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # save_dir = remove_dir_if_exist(join(args.save_dir, "FactorVAE_{}".format(args.run)), ask_4_permission=True)
    # save_dir = make_dir_if_not_exist(save_dir)

    save_dir = make_dir_if_not_exist(join(args.save_dir, "FactorVAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan, linewidth=1000, precision=3, suppress=True)

    num_bins = args.num_bins
    data_proportion = args.data_proportion
    bin_limits = tuple([float(s) for s in args.bin_limits.split(";")])
    top_k = args.top_k

    f = open(join(save_dir, 'log[bins={},bin_limits={},data={}].txt'.
                  format(num_bins, bin_limits, data_proportion)), mode='w')
    print_ = functools.partial(print_both, file=f)

    result_file = join(args.informativeness_metrics_dir, "FactorVAE_{}".format(args.run),
                       'results[bins={},bin_limits={},data={}].npz'.
                       format(num_bins, bin_limits, data_proportion))

    results = np.load(result_file, "r")

    print_("")
    print_("num_bins: {}".format(num_bins))
    print_("bin_limits: {}".format(bin_limits))
    print_("data_proportion: {}".format(data_proportion))
    print_("top_k: {}".format(top_k))

    # Plotting
    # =========================================== #
    # seed = 389
    # num_samples = 30
    seed = 398
    num_samples = 1

    ids = list(range(seed, seed + num_samples))
    print_("\nids: {}".format(ids))

    data = celebA_loader.sample_images_from_dataset(sess, 'train', ids)

    span = 3
    points_one_side = 5

    print_("sorted_MI: {}".format(results["sorted_MI_z_x"]))
    print_("sorted_z_ids: {}".format(results["sorted_z_comps"]))
    print_("sorted_norm_MI: {}".format(results["sorted_norm_MI_z_x"]))
    print_("sorted_norm_z_ids: {}".format(results["sorted_norm_z_comps"]))

    top_MI = results["sorted_MI_z_x"][:top_k]
    top_z_ids = results["sorted_z_comps"][:top_k]
    top_norm_MI = results["sorted_norm_MI_z_x"][:top_k]
    top_norm_z_ids = results["sorted_norm_z_comps"][:top_k]

    print("Matplotlib font size: {}".format(matplotlib.rcParams['font.size'],))
    for n in range(len(ids)):
        if top_k == 10:
            print("Plot conditional all comps z traverse with train sample {}!".format(ids[n]))

            img_file = join(save_dir, "x_train[{}][bins={},bin_limits={},data={}].png".
                            format(ids[n], num_bins, bin_limits, data_proportion))
            model.cond_all_latents_traverse_v2(img_file, sess, data[n],
                                               z_comps=top_z_ids,
                                               z_comp_labels=["z[{}] ({:.2f})".format(comp, mi)
                                                              for comp, mi in zip(top_z_ids, top_MI)],
                                               span=span, points_1_side=points_one_side,
                                               hl_x=True,
                                               font_size=matplotlib.rcParams['font.size'],
                                               subplot_adjust={'left': 0.15, 'right': 0.99,
                                                               'bottom': 0.01, 'top': 0.99},
                                               size_inches=(6.3, 4.9),
                                               batch_size=args.batch_size,
                                               dec_output_2_img_func=binary_float_to_uint8)

            img_file = join(save_dir, "x_train[{}][bins={},bin_limits={},data={},norm].png".
                            format(ids[n], num_bins, bin_limits, data_proportion))
            model.cond_all_latents_traverse_v2(img_file, sess, data[n],
                                               z_comps=top_norm_z_ids,
                                               z_comp_labels=["z[{}] ({:.2f})".format(comp, mi)
                                                              for comp, mi in zip(top_norm_z_ids, top_norm_MI)],
                                               span=span, points_1_side=points_one_side,

                                               hl_x=True,
                                               font_size=matplotlib.rcParams['font.size'],
                                               subplot_adjust={'left': 0.15, 'right': 0.99,
                                                               'bottom': 0.01, 'top': 0.99},
                                               size_inches=(6.3, 4.9),
                                               batch_size=args.batch_size,
                                               dec_output_2_img_func=binary_float_to_uint8)
        else:
            print("Plot conditional all comps z traverse with train sample {}!".format(ids[n]))

            img_file = join(save_dir, "x_train[{}][bins={},bin_limits={},data={}].png".
                            format(ids[n], num_bins, bin_limits, data_proportion))
            model.cond_all_latents_traverse_v2(img_file, sess, data[n],
                                               z_comps=top_z_ids,
                                               z_comp_labels=["z[{}] ({:.2f})".format(comp, mi)
                                                              for comp, mi in zip(top_z_ids, top_MI)],
                                               span=span, points_1_side=points_one_side,
                                               hl_x=True,
                                               font_size=5,
                                               subplot_adjust={'left': 0.19, 'right': 0.99,
                                                               'bottom': 0.01, 'top': 0.99},
                                               size_inches=(2.98, 9.85),
                                               batch_size=args.batch_size,
                                               dec_output_2_img_func=binary_float_to_uint8)

            img_file = join(save_dir, "x_train[{}][bins={},bin_limits={},data={},norm].png".
                            format(ids[n], num_bins, bin_limits, data_proportion))
            model.cond_all_latents_traverse_v2(img_file, sess, data[n],
                                               z_comps=top_norm_z_ids,
                                               z_comp_labels=["z[{}] ({:.2f})".format(comp, mi)
                                                              for comp, mi in zip(top_norm_z_ids, top_norm_MI)],
                                               span=span, points_1_side=points_one_side,
                                               hl_x=True,
                                               font_size=5,
                                               subplot_adjust={'left': 0.19, 'right': 0.99,
                                                               'bottom': 0.01, 'top': 0.99},
                                               size_inches=(2.98, 9.85),
                                               batch_size=args.batch_size,
                                               dec_output_2_img_func=binary_float_to_uint8)
    # =========================================== #

    f.close()
Пример #6
0
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(
            args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3],
                      args.z_dim,
                      encoder=encoder,
                      decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True,
                      gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # =====================================

    # Reconstruct
    # ======================================= #
    seed = 341
    rs = np.random.RandomState(seed)
    ids = rs.choice(celebA_loader.num_test_data, size=15)

    x = celebA_loader.sample_images_from_dataset(sess, 'test', ids)

    save_dir = make_dir_if_not_exist(join(args.save_dir, args.run))

    img_file = join(save_dir, 'x_test.png')
    save_img_block(img_file, binary_float_to_uint8(np.expand_dims(x, axis=0)))

    img_file = join(save_dir, 'recx_test_1.png')
    model.reconstruct_images(img_file,
                             sess,
                             x,
                             block_shape=[1, len(ids)],
                             batch_size=-1,
                             show_original_images=False,
                             dec_output_2_img_func=binary_float_to_uint8)

    img_file = join(save_dir, 'recx_test_2.png')
    model.reconstruct_images(img_file,
                             sess,
                             x,
                             block_shape=[1, len(ids)],
                             batch_size=-1,
                             show_original_images=True,
                             dec_output_2_img_func=binary_float_to_uint8)
Пример #7
0
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny", resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(args.activation))

    if args.enc_dec_model == "1Konny":
        assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim, stochastic=True, activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3], activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    elif args.enc_dec_model == "my":
        assert args.z_dim == 150, "For 1Konny, z_dim must be 150. Found {}!".format(args.z_dim)

        encoder = Encoder_My(args.z_dim, stochastic=True, activation=activation)
        decoder = Decoder_My([img_height, img_width, 3], activation=activation,
                             output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_My(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3], args.z_dim,
                      encoder=encoder, decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True, gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    save_dir = remove_dir_if_exist(join(args.save_dir, "FactorVAE_{}".format(args.run)), ask_4_permission=False)
    save_dir = make_dir_if_not_exist(save_dir)
    # =====================================

    # z correlation matrix
    # ======================================= #
    for deterministic in [True, False]:
        all_z = []

        for batch_ids in iterate_data(celebA_loader.num_train_data, args.batch_size, shuffle=False):
            x = celebA_loader.sample_images_from_dataset(sess, 'train', batch_ids)

            z = model.encode(sess, x, deterministic=deterministic)
            assert len(z.shape) == 2 and z.shape[1] == args.z_dim, "z.shape: {}".format(z.shape)

            all_z.append(z)

        all_z = np.concatenate(all_z, axis=0)

        # plot_corrmat(join(save_dir, "corr_mat[deter={}].png".format(deterministic)), all_z,
        #              font={'size': 14},
        #              subplot_adjust={'left': 0.04, 'right': 0.96, 'bottom': 0.02, 'top': 0.98},
        #              size_inches=(7.2, 6))

        plot_corrmat_with_histogram(join(save_dir, "corr_mat_hist[deter={}].png".format(deterministic)), all_z,
                                    font={'size': 14},
                                    subplot_adjust={'left': 0.04, 'right': 0.96, 'bottom': 0.02, 'top': 0.98},
                                    size_inches=(10, 3))
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebAWithAttrLoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3],
                      args.z_dim,
                      encoder=encoder,
                      decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True,
                      gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    # save_dir = remove_dir_if_exist(join(args.save_dir, "FactorVAE_{}".format(args.run)), ask_4_permission=False)
    # save_dir = make_dir_if_not_exist(save_dir)

    save_dir = make_dir_if_not_exist(
        join(args.save_dir, "FactorVAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan,
                        linewidth=1000,
                        precision=3,
                        suppress=True)

    num_bins = args.num_bins
    bin_limits = tuple([float(s) for s in args.bin_limits.split(";")])
    data_proportion = args.data_proportion
    num_data = int(data_proportion * celebA_loader.num_train_data)
    top_k = args.top_k
    eps = 1e-8

    # file
    f = open(join(
        save_dir, 'log[bins={},bin_limits={},data={}].txt'.format(
            num_bins, bin_limits, data_proportion)),
             mode='w')

    # print function
    print_ = functools.partial(print_both, file=f)

    print_("num_bins: {}".format(num_bins))
    print_("bin_limits: {}".format(bin_limits))
    print_("data_proportion: {}".format(data_proportion))
    print_("top_k: {}".format(top_k))

    # Compute bins
    # ================================= #
    print_("")
    print_("bin_limits: {}".format(bin_limits))
    assert len(bin_limits) == 2 and bin_limits[0] < bin_limits[
        1], "bin_limits={}".format(bin_limits)

    bins = np.linspace(bin_limits[0],
                       bin_limits[1],
                       num_bins + 1,
                       endpoint=True)
    print_("bins: {}".format(bins))
    assert len(bins) == num_bins + 1

    bin_widths = [bins[b] - bins[b - 1] for b in range(1, len(bins))]
    print_("bin_widths: {}".format(bin_widths))
    assert len(bin_widths
               ) == num_bins, "len(bin_widths)={} while num_bins={}!".format(
                   len(bin_widths), num_bins)
    assert np.all(np.greater(bin_widths,
                             0)), "bin_widths: {}".format(bin_widths)

    bin_centers = [(bins[b] + bins[b - 1]) * 0.5 for b in range(1, len(bins))]
    print_("bin_centers: {}".format(bin_centers))
    assert len(bin_centers
               ) == num_bins, "len(bin_centers)={} while num_bins={}!".format(
                   len(bin_centers), num_bins)
    # ================================= #

    # Compute representations
    # ================================= #
    z_data_file = join(args.informativeness_metrics_dir,
                       "FactorVAE_{}".format(args.run),
                       "z_data[data={}].npz".format(data_proportion))

    with np.load(z_data_file, "r") as f:
        all_z_mean = f['all_z_mean']
        all_z_stddev = f['all_z_stddev']

    print_("")
    print_("all_z_mean.shape: {}".format(all_z_mean.shape))
    print_("all_z_stddev.shape: {}".format(all_z_stddev.shape))
    # ================================= #

    # Compute the mutual information
    # ================================= #
    mi_file = join(
        args.informativeness_metrics_dir, "FactorVAE_{}".format(args.run),
        'results[bins={},bin_limits={},data={}].npz'.format(
            num_bins, bin_limits, data_proportion))
    with np.load(mi_file, "r") as f:
        sorted_MI_z_x = f['sorted_MI_z_x']
        sorted_z_ids = f['sorted_z_comps']
        H_z = f['H_z']

    if top_k > 0:
        top_MI = sorted_MI_z_x[:top_k]
        top_z_ids = sorted_z_ids[:top_k]

        bot_MI = sorted_MI_z_x[-top_k:]
        bot_z_ids = sorted_z_ids[-top_k:]

        top_bot_MI = np.concatenate([top_MI, bot_MI], axis=0)
        top_bot_z_ids = np.concatenate([top_z_ids, bot_z_ids], axis=0)

        print_("top MI: {}".format(top_MI))
        print_("top_z_ids: {}".format(top_z_ids))
        print_("bot MI: {}".format(bot_MI))
        print_("bot_z_ids: {}".format(bot_z_ids))

    else:
        top_bot_MI = sorted_MI_z_x
        top_bot_z_ids = sorted_z_ids
    # ================================= #

    H_z1z2_mean_mat = np.full(
        [len(top_bot_z_ids), len(top_bot_z_ids)], -1, dtype=np.float32)
    MI_z1z2_mean_mat = np.full(
        [len(top_bot_z_ids), len(top_bot_z_ids)], -1, dtype=np.float32)
    H_z1z2_mean = []
    MI_z1z2_mean = []
    z1z2_ids = []

    # Compute the mutual information
    # ================================= #
    for i in range(len(top_bot_z_ids)):
        z_idx1 = top_bot_z_ids[i]
        H_s1 = H_z[z_idx1]

        for j in range(i + 1, len(top_bot_z_ids)):
            z_idx2 = top_bot_z_ids[j]
            H_s2 = H_z[z_idx2]

            print_("")
            print_("Compute MI(z{}_mean, z{}_mean)!".format(z_idx1, z_idx2))

            s1s2_mean_counter = np.zeros([num_bins, num_bins], dtype=np.int32)

            for batch_ids in iterate_data(len(all_z_mean),
                                          100,
                                          shuffle=False,
                                          include_remaining=True):
                s1 = at_bin(all_z_mean[batch_ids, z_idx1], bins, one_hot=False)
                s2 = at_bin(all_z_mean[batch_ids, z_idx2], bins, one_hot=False)

                for s1_, s2_ in zip(s1, s2):
                    s1s2_mean_counter[s1_, s2_] += 1

            # I(s1, s2) = Q(s1, s2) * (log Q(s1, s2) - log Q(s1) log Q(s2))
            # ---------------------------------- #
            Q_s1s2_mean = (s1s2_mean_counter *
                           1.0) / np.sum(s1s2_mean_counter).astype(np.float32)
            log_Q_s1s2_mean = np.log(np.maximum(Q_s1s2_mean, eps))

            H_s1s2_mean = -np.sum(Q_s1s2_mean * log_Q_s1s2_mean)
            MI_s1s2_mean = H_s1 + H_s2 - H_s1s2_mean

            print_("H_s1: {}".format(H_s1))
            print_("H_s2: {}".format(H_s2))
            print_("H_s1s2_mean: {}".format(H_s1s2_mean))
            print_("MI_s1s2_mean: {}".format(MI_s1s2_mean))

            H_z1z2_mean.append(H_s1s2_mean)
            MI_z1z2_mean.append(MI_s1s2_mean)
            z1z2_ids.append((z_idx1, z_idx2))

            H_z1z2_mean_mat[i, j] = H_s1s2_mean
            H_z1z2_mean_mat[j, i] = H_s1s2_mean
            MI_z1z2_mean_mat[i, j] = MI_s1s2_mean
            MI_z1z2_mean_mat[j, i] = MI_s1s2_mean

    H_z1z2_mean = np.asarray(H_z1z2_mean, dtype=np.float32)
    MI_z1z2_mean = np.asarray(MI_z1z2_mean, dtype=np.float32)
    z1z2_ids = np.asarray(z1z2_ids, dtype=np.int32)

    result_file = join(
        save_dir, "results[bins={},bin_limits={},data={},k={}].npz".format(
            num_bins, bin_limits, data_proportion, top_k))
    results = {
        'H_z1z2_mean': H_z1z2_mean,
        'MI_z1z2_mean': MI_z1z2_mean,
        'H_z1z2_mean_mat': H_z1z2_mean_mat,
        'MI_z1z2_mean_mat': MI_z1z2_mean_mat,
        'z1z2_ids': z1z2_ids,
    }

    np.savez_compressed(result_file, **results)
    # ================================= #
    f.close()
Пример #9
0
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(os.path.join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Preparation
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)
    num_train = celebA_loader.num_train_data
    num_test = celebA_loader.num_test_data

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))

    # =====================================
    # Instantiate models
    # =====================================
    # Only use activation for encoder and decoder
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny()
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = AAE([img_height, img_width, 3],
                args.z_dim,
                encoder=encoder,
                decoder=decoder,
                discriminator_z=disc_z,
                rec_x_mode=args.rec_x_mode,
                stochastic_z=args.stochastic_z,
                use_gp0_z=True,
                gp0_z_mode=args.gp0_z_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'G_loss_z1_gen': args.G_loss_z1_gen_coeff,
        'D_loss_z1_gen': args.D_loss_z1_gen_coeff,
        'gp0_z': args.gp0_z_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_list()

    # =====================================
    # TF Graph Handler
    asset_dir = make_dir_if_not_exist(os.path.join(args.output_dir, "asset"))
    img_eval = remove_dir_if_exist(os.path.join(asset_dir, "img_eval"),
                                   ask_4_permission=False)
    img_eval = make_dir_if_not_exist(img_eval)

    img_x_gen = make_dir_if_not_exist(os.path.join(img_eval, "x_gen"))
    img_x_rec = make_dir_if_not_exist(os.path.join(img_eval, "x_rec"))
    img_z_rand_2_traversal = make_dir_if_not_exist(
        os.path.join(img_eval, "z_rand_2_traversal"))
    img_z_cond_all_traversal = make_dir_if_not_exist(
        os.path.join(img_eval, "z_cond_all_traversal"))
    img_z_cond_1_traversal = make_dir_if_not_exist(
        os.path.join(img_eval, "z_cond_1_traversal"))
    img_z_corr = make_dir_if_not_exist(os.path.join(img_eval, "z_corr"))
    img_z_dist = make_dir_if_not_exist(os.path.join(img_eval, "z_dist"))
    img_z_stat_dist = make_dir_if_not_exist(
        os.path.join(img_eval, "z_stat_dist"))
    # img_rec_error_dist = make_dir_if_not_exist(os.path.join(img_eval, "rec_error_dist"))

    model_dir = make_dir_if_not_exist(os.path.join(args.output_dir,
                                                   "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)
    # =====================================

    # =====================================
    # Training Loop
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # '''
    # Generation
    # ======================================= #
    z = np.random.randn(64, args.z_dim)

    img_file = os.path.join(img_x_gen, 'x_gen_test.png')
    model.generate_images(img_file,
                          sess,
                          z,
                          block_shape=[8, 8],
                          batch_size=args.batch_size,
                          dec_output_2_img_func=binary_float_to_uint8)
    # ======================================= #
    # '''

    # '''
    # Reconstruction
    # ======================================= #
    seed = 389
    x = celebA_loader.sample_images_from_dataset(sess, 'test',
                                                 list(range(seed, seed + 64)))

    img_file = os.path.join(img_x_rec, 'x_rec_test.png')
    model.reconstruct_images(img_file,
                             sess,
                             x,
                             block_shape=[8, 8],
                             batch_size=-1,
                             dec_output_2_img_func=binary_float_to_uint8)
    # ======================================= #
    # '''

    # '''
    # z random traversal
    # ======================================= #
    if args.z_dim <= 5:
        print("z_dim = {}, perform random traversal!".format(args.z_dim))

        # Plot z cont with z cont
        z_zero = np.zeros([args.z_dim], dtype=np.float32)
        z_rand = np.random.randn(args.z_dim)
        z_start, z_stop = -4, 4
        num_points = 8

        for i in range(args.z_dim):
            for j in range(i + 1, args.z_dim):
                print(
                    "Plot random 2 comps z traverse with {} and {} components!"
                    .format(i, j))

                img_file = os.path.join(img_z_rand_2_traversal,
                                        'z[{},{},zero].png'.format(i, j))
                model.rand_2_latents_traverse(
                    img_file,
                    sess,
                    default_z=z_zero,
                    z_comp1=i,
                    start1=z_start,
                    stop1=z_stop,
                    num_points1=num_points,
                    z_comp2=j,
                    start2=z_start,
                    stop2=z_stop,
                    num_points2=num_points,
                    batch_size=args.batch_size,
                    dec_output_2_img_func=binary_float_to_uint8)

                img_file = os.path.join(img_z_rand_2_traversal,
                                        'z[{},{},rand].png'.format(i, j))
                model.rand_2_latents_traverse(
                    img_file,
                    sess,
                    default_z=z_rand,
                    z_comp1=i,
                    start1=z_start,
                    stop1=z_stop,
                    num_points1=num_points,
                    z_comp2=j,
                    start2=z_stop,
                    stop2=z_stop,
                    num_points2=num_points,
                    batch_size=args.batch_size,
                    dec_output_2_img_func=binary_float_to_uint8)
    # ======================================= #
    # '''

    # z conditional traversal (all features + one feature)
    # ======================================= #
    seed = 389
    num_samples = 30
    data = celebA_loader.sample_images_from_dataset(
        sess, 'train', list(range(seed, seed + num_samples)))

    z_start, z_stop = -4, 4
    num_itpl_points = 8
    for n in range(num_samples):
        print("Plot conditional all comps z traverse with test sample {}!".
              format(n))
        img_file = os.path.join(img_z_cond_all_traversal,
                                'x_train{}.png'.format(n))
        model.cond_all_latents_traverse(
            img_file,
            sess,
            data[n],
            start=z_start,
            stop=z_stop,
            num_itpl_points=num_itpl_points,
            batch_size=args.batch_size,
            dec_output_2_img_func=binary_float_to_uint8)

    z_start, z_stop = -4, 4
    num_itpl_points = 8
    for i in range(args.z_dim):
        print("Plot conditional z traverse with comp {}!".format(i))
        img_file = os.path.join(
            img_z_cond_1_traversal,
            'x_train[{},{}]_z{}.png'.format(seed, seed + num_samples, i))
        model.cond_1_latent_traverse(
            img_file,
            sess,
            data,
            z_comp=i,
            start=z_start,
            stop=z_stop,
            num_itpl_points=num_itpl_points,
            batch_size=args.batch_size,
            dec_output_2_img_func=binary_float_to_uint8)
    # ======================================= #
    # '''

    # '''
    # z correlation matrix
    # ======================================= #
    all_z = []
    for batch_ids in iterate_data(num_train, args.batch_size, shuffle=False):
        x = celebA_loader.sample_images_from_dataset(sess, 'train', batch_ids)

        z = model.encode(sess, x)
        assert len(
            z.shape) == 2 and z.shape[1] == args.z_dim, "z.shape: {}".format(
                z.shape)

        all_z.append(z)

    all_z = np.concatenate(all_z, axis=0)

    print("Start plotting!")
    plot_corrmat_with_histogram(os.path.join(img_z_corr, "corr_mat.png"),
                                all_z)
    plot_comp_dist(os.path.join(img_z_dist, 'z_{}'), all_z, x_lim=(-5, 5))
    print("Done!")
    # ======================================= #
    # '''

    # '''
    # z gaussian stddev
    # ======================================= #
    print("\nPlot z mean and stddev!")
    all_z_mean = []
    all_z_stddev = []

    for batch_ids in iterate_data(num_train, args.batch_size, shuffle=False):
        x = celebA_loader.sample_images_from_dataset(sess, 'train', batch_ids)

        z_mean, z_stddev = sess.run(model.get_output(['z_mean', 'z_stddev']),
                                    feed_dict={
                                        model.is_train: False,
                                        model.x_ph: x
                                    })

        all_z_mean.append(z_mean)
        all_z_stddev.append(z_stddev)

    all_z_mean = np.concatenate(all_z_mean, axis=0)
    all_z_stddev = np.concatenate(all_z_stddev, axis=0)

    plot_comp_dist(os.path.join(img_z_stat_dist, 'z_mean_{}.png'),
                   all_z_mean,
                   x_lim=(-5, 5))
    plot_comp_dist(os.path.join(img_z_stat_dist, 'z_stddev_{}.png'),
                   all_z_stddev,
                   x_lim=(-0.5, 3))
def main(args):
    # =====================================
    # Load config
    # =====================================
    with open(join(args.output_dir, 'config.json')) as f:
        config = json.load(f)
    args.__dict__.update(config)

    # =====================================
    # Dataset
    # =====================================
    celebA_loader = TFCelebALoader(root_dir=args.celebA_root_dir)

    img_height, img_width = args.celebA_resize_size, args.celebA_resize_size
    celebA_loader.build_transformation_flow_tf(
        *celebA_loader.get_transform_fns("1Konny",
                                         resize_size=args.celebA_resize_size))
    num_train = celebA_loader.num_train_data

    # =====================================
    # Instantiate model
    # =====================================
    if args.activation == "relu":
        activation = tf.nn.relu
    elif args.activation == "leaky_relu":
        activation = tf.nn.leaky_relu
    else:
        raise ValueError("Do not support '{}' activation!".format(
            args.activation))

    if args.enc_dec_model == "1Konny":
        # assert args.z_dim == 65, "For 1Konny, z_dim must be 65. Found {}!".format(args.z_dim)

        encoder = Encoder_1Konny(args.z_dim,
                                 stochastic=True,
                                 activation=activation)
        decoder = Decoder_1Konny([img_height, img_width, 3],
                                 activation=activation,
                                 output_activation=tf.nn.sigmoid)
        disc_z = DiscriminatorZ_1Konny(num_outputs=2)
    else:
        raise ValueError("Do not support encoder/decoder model '{}'!".format(
            args.enc_dec_model))

    model = FactorVAE([img_height, img_width, 3],
                      args.z_dim,
                      encoder=encoder,
                      decoder=decoder,
                      discriminator_z=disc_z,
                      rec_x_mode=args.rec_x_mode,
                      use_gp0_z_tc=True,
                      gp0_z_tc_mode=args.gp0_z_tc_mode)

    loss_coeff_dict = {
        'rec_x': args.rec_x_coeff,
        'kld_loss': args.kld_loss_coeff,
        'tc_loss': args.tc_loss_coeff,
        'gp0_z_tc': args.gp0_z_tc_coeff,
    }

    model.build(loss_coeff_dict)
    SimpleParamPrinter.print_all_params_tf_slim()

    # =====================================
    # Load model
    # =====================================
    config_proto = tf.ConfigProto(allow_soft_placement=True)
    config_proto.gpu_options.allow_growth = True
    config_proto.gpu_options.per_process_gpu_memory_fraction = 0.9
    sess = tf.Session(config=config_proto)

    model_dir = make_dir_if_not_exist(join(args.output_dir, "model_tf"))
    train_helper = SimpleTrainHelper(log_dir=None, save_dir=model_dir)

    # Load model
    train_helper.load(sess, load_step=args.load_step)

    # =====================================
    # Experiments
    save_dir = remove_dir_if_exist(join(args.save_dir,
                                        "FactorVAE_{}".format(args.run)),
                                   ask_4_permission=False)
    save_dir = make_dir_if_not_exist(save_dir)

    # save_dir = make_dir_if_not_exist(join(args.save_dir, "FactorVAE_{}".format(args.run)))
    # =====================================

    np.set_printoptions(threshold=np.nan,
                        linewidth=1000,
                        precision=3,
                        suppress=True)
    f = open(join(save_dir, 'log.txt'), mode='w')
    print_ = functools.partial(print_both, file=f)

    # z gaussian stddev
    # ======================================= #
    all_z_mean = []
    all_z_stddev = []

    count = 0
    for batch_ids in iterate_data(int(0.05 * num_train),
                                  10 * args.batch_size,
                                  shuffle=False):
        x = celebA_loader.sample_images_from_dataset(sess, 'train', batch_ids)

        z_mean, z_stddev = sess.run(model.get_output(['z_mean', 'z_stddev']),
                                    feed_dict={
                                        model.is_train: False,
                                        model.x_ph: x
                                    })

        all_z_mean.append(z_mean)
        all_z_stddev.append(z_stddev)

        count += len(batch_ids)
        print("\rProcessed {} samples!".format(count), end="")
    print()

    all_z_mean = np.concatenate(all_z_mean, axis=0)
    all_z_stddev = np.concatenate(all_z_stddev, axis=0)
    # ======================================= #

    z_std_error = np.std(all_z_mean, axis=0, ddof=0)
    z_sorted_comps = np.argsort(z_std_error)[::-1]
    top10_z_comps = z_sorted_comps[:10]

    print_("")
    print_("z_std_error: {}".format(z_std_error))
    print_("z_sorted_std_error: {}".format(z_std_error[z_sorted_comps]))
    print_("z_sorted_comps: {}".format(z_sorted_comps))
    print_("top10_z_comps: {}".format(top10_z_comps))

    z_stddev_mean = np.mean(all_z_stddev, axis=0)
    info_z_comps = [
        idx for idx in range(len(z_stddev_mean)) if z_stddev_mean[idx] < 0.4
    ]
    print_("info_z_comps: {}".format(info_z_comps))
    print_("len(info_z_comps): {}".format(len(info_z_comps)))

    # Plotting
    # =========================================== #
    seed = 389
    num_samples = 30
    ids = list(range(seed, seed + num_samples))
    print("\nids: {}".format(ids))

    data = celebA_loader.sample_images_from_dataset(sess, 'train', ids)

    span = 3
    points_one_side = 5

    # span = 8
    # points_one_side = 12

    for n in range(len(ids)):
        print("Plot conditional all comps z traverse with train sample {}!".
              format(ids[n]))
        img_file = join(save_dir,
                        "x_train[{}]_[span={}]_hl.png".format(ids[n], span))
        # model.cond_all_latents_traverse_v2(img_file, sess, data[n],
        #                                 z_comps=top10_z_comps,
        #                                 z_comp_labels=None,
        #                                 span=span, points_1_side=points_one_side,
        #                                 hl_x=True,
        #                                 batch_size=args.batch_size,
        #                                 dec_output_2_img_func=binary_float_to_uint8)

        img_file = join(
            save_dir,
            "x_train[{}]_[span={}]_hl_labeled.png".format(ids[n], span))
        model.cond_all_latents_traverse_v2(
            img_file,
            sess,
            data[n],
            z_comps=top10_z_comps,
            z_comp_labels=["z[{}]".format(comp) for comp in top10_z_comps],
            span=span,
            points_1_side=points_one_side,
            hl_x=True,
            subplot_adjust={
                'left': 0.09,
                'right': 0.98,
                'bottom': 0.02,
                'top': 0.98
            },
            size_inches=(6, 5),
            batch_size=args.batch_size,
            dec_output_2_img_func=binary_float_to_uint8)

        # img_file = join(save_dir, "x_train[{}]_[span={}].png".format(ids[n], span))
        # model.cond_all_latents_traverse_v2(img_file, sess, data[n],
        #                                    z_comps=top10_z_comps,
        #                                    z_comp_labels=None,
        #                                    span=span, points_1_side=points_one_side,
        #                                    hl_x=False,
        #                                    batch_size=args.batch_size,
        #                                    dec_output_2_img_func=binary_float_to_uint8)
        #
        # img_file = join(save_dir, "x_train[{}]_[span={}]_labeled.png".format(ids[n], span))
        # model.cond_all_latents_traverse_v2(img_file, sess, data[n],
        #                                    z_comps=top10_z_comps,
        #                                    z_comp_labels=["z[{}]".format(comp) for comp in top10_z_comps],
        #                                    span=span, points_1_side=points_one_side,
        #                                    hl_x=False,
        #                                    subplot_adjust={'left': 0.09, 'right': 0.98, 'bottom': 0.02, 'top': 0.98},
        #                                    size_inches=(6, 5),
        #                                    batch_size=args.batch_size,
        #                                    dec_output_2_img_func=binary_float_to_uint8)

        img_file = join(
            save_dir, "x_train[{}]_[span={}]_info_hl.png".format(ids[n], span))
        model.cond_all_latents_traverse_v2(
            img_file,
            sess,
            data[n],
            z_comps=info_z_comps,
            z_comp_labels=None,
            span=span,
            points_1_side=points_one_side,
            hl_x=True,
            batch_size=args.batch_size,
            dec_output_2_img_func=binary_float_to_uint8)
    # =========================================== #

    f.close()