def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval()
def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() for module in [self.facenet, self.face_pool]: for param in module.parameters(): param.requires_grad = False
class IDLoss(nn.Module): def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() def extract_feats(self, x): x = x[:, :, 0:196, 94:290] # Crop shoulder and reshape to square image rescale = 196 / 256 # (35, 223) and (32, 220) is position on 256x256 img. # Current img size is 196x196 x = x[:, :, int(35 * rescale):int(223 * rescale), int(32 * rescale):int(220 * rescale)] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, y, x): n_samples = x.shape[0] x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) # Otherwise use the feature from there y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) diff_input = y_hat_feats[i].dot(x_feats[i]) diff_views = y_feats[i].dot(x_feats[i]) id_logs.append({ 'diff_target': float(diff_target), 'diff_input': float(diff_input), 'diff_views': float(diff_views) }) loss += 1 - diff_target id_diff = float(diff_target) - float(diff_views) sim_improvement += id_diff count += 1 return loss / count, sim_improvement / count, id_logs
class IDLoss(nn.Module): def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, y, x, label=None, weights=None): n_samples = x.shape[0] x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() total_loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) diff_input = y_hat_feats[i].dot(x_feats[i]) diff_views = y_feats[i].dot(x_feats[i]) if label is None: id_logs.append({'diff_target': float(diff_target), 'diff_input': float(diff_input), 'diff_views': float(diff_views)}) else: id_logs.append({f'diff_target_{label}': float(diff_target), f'diff_input_{label}': float(diff_input), f'diff_views_{label}': float(diff_views)}) loss = 1 - diff_target if weights is not None: loss = weights[i] * loss total_loss += loss id_diff = float(diff_target) - float(diff_views) sim_improvement += id_diff count += 1 return total_loss / count, sim_improvement / count, id_logs
class IDLoss(nn.Module): def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() for module in [self.facenet, self.face_pool]: for param in module.parameters(): param.requires_grad = False def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, y, x): n_samples = x.shape[0] x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) # Otherwise use the feature from there y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) diff_input = y_hat_feats[i].dot(x_feats[i]) diff_views = y_feats[i].dot(x_feats[i]) id_logs.append({ 'diff_target': float(diff_target), 'diff_input': float(diff_input), 'diff_views': float(diff_views) }) loss += 1 - diff_target id_diff = float(diff_target) - float(diff_views) sim_improvement += id_diff count += 1 return loss / count, sim_improvement / count, id_logs