def generator_factory(type): if type == 'naive': return gan_cls.generator() elif type == 'gan': return gan_cls.generator() elif type == 'wgan': return wgan_cls.generator() elif type == 'vanilla_gan': return gan.generator() elif type == 'vanilla_wgan': return wgan.generator()
def generator_factory(type): if type == 'gan': return gan_cls.generator() elif type == 'wgan': return wgan_cls.generator() elif type == 'vanilla_gan': return gan.generator() elif type == 'vanilla_wgan': return wgan.generator() elif type == 'inverse_gan': return gan_inverse.generator_inverse() elif type == 'stage2_gan': return gan_cls.generator2()
def generator_factory(type, dataset, b_size, h, scale_size, num_channels): if type == 'gan': return gan_cls.generator() elif type == 'wgan': return wgan_cls.generator(dataset=dataset) elif type == 'vanilla_gan': return gan.generator() elif type == 'vanilla_wgan': return wgan.generator() elif type == 'began': return began.Decoder(b_size, h, scale_size, num_channels) elif type == 'acgan': return segan.generator() #return acgan.generator() elif type == 'segan': return segan.generator()
def generator_factory(type): if type == 'gan': return gan_cls.generator() elif type == 'stage2_gan': return gan_cls.generator2()