Пример #1
0
def main():
    args = get_args()
    # CUDA setting
    if not torch.cuda.is_available():
        raise ValueError("Should buy GPU!")
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    device = torch.device('cuda')
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    torch.backends.cudnn.benchmark = True

    def _rescale(img):
        return img * 2.0 - 1.0

    def _noise_adder(img):
        return torch.empty_like(img, dtype=img.dtype).uniform_(0.0,
                                                               1 / 128.0) + img

    # dataset
    train_dataset = datasets.ImageFolder(
        os.path.join(args.data_root, 'train'),
        transforms.Compose([
            transforms.ToTensor(),
            _rescale,
            _noise_adder,
        ]))
    train_loader = iter(
        data.DataLoader(train_dataset,
                        args.batch_size,
                        sampler=InfiniteSamplerWrapper(train_dataset),
                        num_workers=args.num_workers,
                        pin_memory=True))
    if args.calc_FID:
        eval_dataset = datasets.ImageFolder(
            os.path.join(args.data_root, 'val'),
            transforms.Compose([
                transforms.ToTensor(),
                _rescale,
            ]))
        eval_loader = iter(
            data.DataLoader(eval_dataset,
                            args.batch_size,
                            sampler=InfiniteSamplerWrapper(eval_dataset),
                            num_workers=args.num_workers,
                            pin_memory=True))
    else:
        eval_loader = None
    num_classes = len(train_dataset.classes)
    print(' prepared datasets...')
    print(' Number of training images: {}'.format(len(train_dataset)))
    # Prepare directories.
    args.num_classes = num_classes
    args, writer = prepare_results_dir(args)
    # initialize models.
    _n_cls = num_classes if args.cGAN else 0
    gen = ResNetGenerator(args.gen_num_features,
                          args.gen_dim_z,
                          args.gen_bottom_width,
                          activation=F.relu,
                          num_classes=_n_cls,
                          distribution=args.gen_distribution).to(device)
    if args.dis_arch_concat:
        dis = SNResNetConcatDiscriminator(args.dis_num_features, _n_cls,
                                          F.relu, args.dis_emb).to(device)
    else:
        dis = SNResNetProjectionDiscriminator(args.dis_num_features, _n_cls,
                                              F.relu).to(device)
    inception_model = inception.InceptionV3().to(
        device) if args.calc_FID else None

    opt_gen = optim.Adam(gen.parameters(), args.lr, (args.beta1, args.beta2))
    opt_dis = optim.Adam(dis.parameters(), args.lr, (args.beta1, args.beta2))

    # gen_criterion = getattr(L, 'gen_{}'.format(args.loss_type))
    # dis_criterion = getattr(L, 'dis_{}'.format(args.loss_type))
    gen_criterion = L.GenLoss(args.loss_type, args.relativistic_loss)
    dis_criterion = L.DisLoss(args.loss_type, args.relativistic_loss)
    print(' Initialized models...\n')

    if args.args_path is not None:
        print(' Load weights...\n')
        prev_args, gen, opt_gen, dis, opt_dis = utils.resume_from_args(
            args.args_path, args.gen_ckpt_path, args.dis_ckpt_path)

    # Training loop
    for n_iter in tqdm.tqdm(range(1, args.max_iteration + 1)):

        if n_iter >= args.lr_decay_start:
            decay_lr(opt_gen, args.max_iteration, args.lr_decay_start, args.lr)
            decay_lr(opt_dis, args.max_iteration, args.lr_decay_start, args.lr)

        # ==================== Beginning of 1 iteration. ====================
        _l_g = .0
        cumulative_loss_dis = .0
        for i in range(args.n_dis):
            if i == 0:
                fake, pseudo_y, _ = sample_from_gen(args, device, num_classes,
                                                    gen)
                dis_fake = dis(fake, pseudo_y)
                if args.relativistic_loss:
                    real, y = sample_from_data(args, device, train_loader)
                    dis_real = dis(real, y)
                else:
                    dis_real = None

                loss_gen = gen_criterion(dis_fake, dis_real)
                gen.zero_grad()
                loss_gen.backward()
                opt_gen.step()
                _l_g += loss_gen.item()
                if n_iter % 10 == 0 and writer is not None:
                    writer.add_scalar('gen', _l_g, n_iter)

            fake, pseudo_y, _ = sample_from_gen(args, device, num_classes, gen)
            real, y = sample_from_data(args, device, train_loader)

            dis_fake, dis_real = dis(fake, pseudo_y), dis(real, y)
            loss_dis = dis_criterion(dis_fake, dis_real)

            dis.zero_grad()
            loss_dis.backward()
            opt_dis.step()

            cumulative_loss_dis += loss_dis.item()
            if n_iter % 10 == 0 and i == args.n_dis - 1 and writer is not None:
                cumulative_loss_dis /= args.n_dis
                writer.add_scalar('dis', cumulative_loss_dis / args.n_dis,
                                  n_iter)
        # ==================== End of 1 iteration. ====================

        if n_iter % args.log_interval == 0:
            tqdm.tqdm.write(
                'iteration: {:07d}/{:07d}, loss gen: {:05f}, loss dis {:05f}'.
                format(n_iter, args.max_iteration, _l_g, cumulative_loss_dis))
            if not args.no_image:
                writer.add_image(
                    'fake',
                    torchvision.utils.make_grid(fake,
                                                nrow=4,
                                                normalize=True,
                                                scale_each=True))
                writer.add_image(
                    'real',
                    torchvision.utils.make_grid(real,
                                                nrow=4,
                                                normalize=True,
                                                scale_each=True))
            # Save previews
            utils.save_images(n_iter, n_iter // args.checkpoint_interval,
                              args.results_root, args.train_image_root, fake,
                              real)
        if n_iter % args.checkpoint_interval == 0:
            # Save checkpoints!
            utils.save_checkpoints(args, n_iter,
                                   n_iter // args.checkpoint_interval, gen,
                                   opt_gen, dis, opt_dis)
        if n_iter % args.eval_interval == 0:
            # TODO (crcrpar): implement Ineption score, FID, and Geometry score
            # Once these criterion are prepared, val_loader will be used.
            fid_score = evaluation.evaluate(args, n_iter, gen, device,
                                            inception_model, eval_loader)
            tqdm.tqdm.write(
                '[Eval] iteration: {:07d}/{:07d}, FID: {:07f}'.format(
                    n_iter, args.max_iteration, fid_score))
            if writer is not None:
                writer.add_scalar("FID", fid_score, n_iter)
                # Project embedding weights if exists.
                embedding_layer = getattr(dis, 'l_y', None)
                if embedding_layer is not None:
                    writer.add_embedding(embedding_layer.weight.data,
                                         list(range(args.num_classes)),
                                         global_step=n_iter)
    if args.test:
        shutil.rmtree(args.results_root)
Пример #2
0
def main():
    logger = logging.getLogger('tl')
    args = get_args()
    # CUDA setting
    if not torch.cuda.is_available():
        raise ValueError("Should buy GPU!")
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    device = torch.device('cuda')
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    torch.backends.cudnn.benchmark = True

    def _rescale(img):
        return img * 2.0 - 1.0

    def _noise_adder(img):
        return torch.empty_like(img, dtype=img.dtype).uniform_(0.0,
                                                               1 / 128.0) + img

    # dataset
    dataset_cfg = global_cfg.get('dataset_cfg', {})
    dataset_module = dataset_cfg.get('dataset_module', 'datasets.ImageFolder')

    train_dataset = eval(dataset_module)(os.path.join(args.data_root),
                                         transform=transforms.Compose([
                                             transforms.ToTensor(),
                                             _rescale,
                                             _noise_adder,
                                         ]),
                                         **dataset_cfg.get(
                                             'dataset_kwargs', {}))
    train_loader = iter(
        data.DataLoader(train_dataset,
                        args.batch_size,
                        sampler=InfiniteSamplerWrapper(train_dataset),
                        num_workers=args.num_workers,
                        pin_memory=False))
    if args.calc_FID:
        eval_dataset = datasets.ImageFolder(
            os.path.join(args.data_root, 'val'),
            transforms.Compose([
                transforms.ToTensor(),
                _rescale,
            ]))
        eval_loader = iter(
            data.DataLoader(eval_dataset,
                            args.batch_size,
                            sampler=InfiniteSamplerWrapper(eval_dataset),
                            num_workers=args.num_workers,
                            pin_memory=True))
    else:
        eval_loader = None
    num_classes = len(train_dataset.classes)
    print(' prepared datasets...')
    print(' Number of training images: {}'.format(len(train_dataset)))
    # Prepare directories.
    args.num_classes = num_classes
    args, writer = prepare_results_dir(args)
    # initialize models.
    _n_cls = num_classes if args.cGAN else 0

    gen_module = getattr(
        global_cfg.generator, 'module',
        'pytorch_sngan_projection_lib.models.generators.resnet64')
    model_module = importlib.import_module(gen_module)

    gen = model_module.ResNetGenerator(
        args.gen_num_features,
        args.gen_dim_z,
        args.gen_bottom_width,
        activation=F.relu,
        num_classes=_n_cls,
        distribution=args.gen_distribution).to(device)

    if args.dis_arch_concat:
        dis = SNResNetConcatDiscriminator(args.dis_num_features, _n_cls,
                                          F.relu, args.dis_emb).to(device)
    else:
        dis = SNResNetProjectionDiscriminator(args.dis_num_features, _n_cls,
                                              F.relu).to(device)
    inception_model = inception.InceptionV3().to(
        device) if args.calc_FID else None

    opt_gen = optim.Adam(gen.parameters(), args.lr, (args.beta1, args.beta2))
    opt_dis = optim.Adam(dis.parameters(), args.lr, (args.beta1, args.beta2))

    # gen_criterion = getattr(L, 'gen_{}'.format(args.loss_type))
    # dis_criterion = getattr(L, 'dis_{}'.format(args.loss_type))
    gen_criterion = L.GenLoss(args.loss_type, args.relativistic_loss)
    dis_criterion = L.DisLoss(args.loss_type, args.relativistic_loss)
    print(' Initialized models...\n')

    if args.args_path is not None:
        print(' Load weights...\n')
        prev_args, gen, opt_gen, dis, opt_dis = utils.resume_from_args(
            args.args_path, args.gen_ckpt_path, args.dis_ckpt_path)

    # tf FID
    tf_FID = build_GAN_metric(cfg=global_cfg.GAN_metric)

    class SampleFunc(object):
        def __init__(self, generator, batch, latent, gen_distribution, device):
            self.generator = generator
            self.batch = batch
            self.latent = latent
            self.gen_distribution = gen_distribution
            self.device = device
            pass

        def __call__(self, *args, **kwargs):
            with torch.no_grad():
                self.generator.eval()
                z = utils.sample_z(self.batch, self.latent, self.device,
                                   self.gen_distribution)
                pseudo_y = utils.sample_pseudo_labels(num_classes, self.batch,
                                                      self.device)
                fake_img = self.generator(z, pseudo_y)
            return fake_img

    sample_func = SampleFunc(gen,
                             batch=args.batch_size,
                             latent=args.gen_dim_z,
                             gen_distribution=args.gen_distribution,
                             device=device)

    # Training loop
    for n_iter in tqdm.tqdm(range(1, args.max_iteration + 1)):

        if n_iter >= args.lr_decay_start:
            decay_lr(opt_gen, args.max_iteration, args.lr_decay_start, args.lr)
            decay_lr(opt_dis, args.max_iteration, args.lr_decay_start, args.lr)

        # ==================== Beginning of 1 iteration. ====================
        _l_g = .0
        cumulative_loss_dis = .0
        for i in range(args.n_dis):
            if i == 0:
                fake, pseudo_y, _ = sample_from_gen(args, device, num_classes,
                                                    gen)
                dis_fake = dis(fake, pseudo_y)
                if args.relativistic_loss:
                    real, y = sample_from_data(args, device, train_loader)
                    dis_real = dis(real, y)
                else:
                    dis_real = None

                loss_gen = gen_criterion(dis_fake, dis_real)
                gen.zero_grad()
                loss_gen.backward()
                opt_gen.step()
                _l_g += loss_gen.item()
                if n_iter % 10 == 0 and writer is not None:
                    writer.add_scalar('gen', _l_g, n_iter)

            fake, pseudo_y, _ = sample_from_gen(args, device, num_classes, gen)
            real, y = sample_from_data(args, device, train_loader)

            dis_fake, dis_real = dis(fake, pseudo_y), dis(real, y)
            loss_dis = dis_criterion(dis_fake, dis_real)

            dis.zero_grad()
            loss_dis.backward()
            opt_dis.step()

            cumulative_loss_dis += loss_dis.item()
            if n_iter % 10 == 0 and i == args.n_dis - 1 and writer is not None:
                cumulative_loss_dis /= args.n_dis
                writer.add_scalar('dis', cumulative_loss_dis / args.n_dis,
                                  n_iter)
        # ==================== End of 1 iteration. ====================

        if n_iter % args.log_interval == 0 or n_iter == 1:
            tqdm.tqdm.write(
                'iteration: {:07d}/{:07d}, loss gen: {:05f}, loss dis {:05f}'.
                format(n_iter, args.max_iteration, _l_g, cumulative_loss_dis))
            if not args.no_image:
                writer.add_image(
                    'fake',
                    torchvision.utils.make_grid(fake,
                                                nrow=4,
                                                normalize=True,
                                                scale_each=True))
                writer.add_image(
                    'real',
                    torchvision.utils.make_grid(real,
                                                nrow=4,
                                                normalize=True,
                                                scale_each=True))
            # Save previews
            utils.save_images(n_iter, n_iter // args.checkpoint_interval,
                              args.results_root, args.train_image_root, fake,
                              real)
        if n_iter % args.checkpoint_interval == 0:
            # Save checkpoints!
            utils.save_checkpoints(args, n_iter,
                                   n_iter // args.checkpoint_interval, gen,
                                   opt_gen, dis, opt_dis)
        if (n_iter % args.eval_interval == 0
                or n_iter == 1) and eval_loader is not None:
            # TODO (crcrpar): implement Ineption score, FID, and Geometry score
            # Once these criterion are prepared, val_loader will be used.
            fid_score = evaluation.evaluate(args, n_iter, gen, device,
                                            inception_model, eval_loader)
            tqdm.tqdm.write(
                '[Eval] iteration: {:07d}/{:07d}, FID: {:07f}'.format(
                    n_iter, args.max_iteration, fid_score))
            if writer is not None:
                writer.add_scalar("FID", fid_score, n_iter)
                # Project embedding weights if exists.
                embedding_layer = getattr(dis, 'l_y', None)
                if embedding_layer is not None:
                    writer.add_embedding(embedding_layer.weight.data,
                                         list(range(args.num_classes)),
                                         global_step=n_iter)
        if n_iter % global_cfg.eval_FID_every == 0 or n_iter == 1:
            FID_tf, IS_mean_tf, IS_std_tf = tf_FID(sample_func=sample_func)
            logger.info(
                f'IS_mean_tf:{IS_mean_tf:.3f} +- {IS_std_tf:.3f}\n\tFID_tf: {FID_tf:.3f}'
            )
            if not math.isnan(IS_mean_tf):
                summary_d = {}
                summary_d['FID_tf'] = FID_tf
                summary_d['IS_mean_tf'] = IS_mean_tf
                summary_d['IS_std_tf'] = IS_std_tf
                summary_dict2txtfig(summary_d,
                                    prefix='train',
                                    step=n_iter,
                                    textlogger=global_textlogger)
            gen.train()
    if args.test:
        shutil.rmtree(args.results_root)
Пример #3
0
def main():
    args = get_args()
    # CUDA setting
    if not torch.cuda.is_available():
        raise ValueError("Should buy GPU!")
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    device = torch.device('cuda')
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    torch.backends.cudnn.benchmark = True

    def _rescale(img):
        return img * 2.0 - 1.0

    def _noise_adder(img):
        return torch.empty_like(img, dtype=img.dtype).uniform_(0.0,
                                                               1 / 128.0) + img

    eval_dataset = cifar10.CIFAR10(root=args.data_root,
                                   train=False,
                                   download=True,
                                   transform=transforms.Compose([
                                       transforms.Resize(64),
                                       transforms.ToTensor(),
                                       transforms.Normalize((0.5, 0.5, 0.5),
                                                            (0.5, 0.5, 0.5))
                                   ]),
                                   minority_classes=None,
                                   keep_ratio=None)
    eval_loader = iter(
        torch.utils.data.DataLoader(
            eval_dataset,
            batch_size=args.batch_size,
            sampler=InfiniteSamplerWrapper(eval_dataset),
            num_workers=args.num_workers,
            pin_memory=True))

    print(' prepared datasets...')

    # Prepare directories.
    num_classes = len(eval_dataset.classes)
    args.num_classes = num_classes

    # initialize models.
    _n_cls = num_classes if args.cGAN else 0
    gen = ResNetGenerator(args.gen_num_features,
                          args.gen_dim_z,
                          args.gen_bottom_width,
                          activation=F.relu,
                          num_classes=_n_cls,
                          distribution=args.gen_distribution).to(device)
    if args.dis_arch_concat:
        dis = SNResNetConcatDiscriminator(args.dis_num_features, _n_cls,
                                          F.relu, args.dis_emb).to(device)
    else:
        dis = SNResNetProjectionDiscriminator(args.dis_num_features, _n_cls,
                                              F.relu,
                                              args.transform_space).to(device)
    inception_model = inception.InceptionV3().to(
        device) if args.calc_FID else None

    gen = torch.nn.DataParallel(gen)
    # dis = torch.nn.DataParallel(dis)

    opt_gen = optim.Adam(gen.parameters(), args.lr, (args.beta1, args.beta2))
    opt_dis = optim.Adam(dis.parameters(), args.lr, (args.beta1, args.beta2))

    # gen_criterion = getattr(L, 'gen_{}'.format(args.loss_type))
    # dis_criterion = getattr(L, 'dis_{}'.format(args.loss_type))
    gen_criterion = L.GenLoss(args.loss_type, args.relativistic_loss)
    dis_criterion = L.DisLoss(args.loss_type, args.relativistic_loss)

    print(' Initialized models...\n')

    if args.args_path is None:
        print("Please specify weights to load")
        exit()
    else:
        print(' Load weights...\n')

        prev_args, gen, opt_gen, dis, opt_dis = utils.resume_from_args(
            args.args_path, args.gen_ckpt_path, args.dis_ckpt_path)
    args.n_fid_batches = args.n_eval_batches
    fid_score = evaluation.evaluate(args,
                                    0,
                                    gen,
                                    device,
                                    inception_model,
                                    eval_loader,
                                    to_save=False)
    print(fid_score)