def test_simple_long(lstm_kwargs_1): model = lstm.LSTMModel('test-simple-long', 2, use_long=True, **lstm_kwargs_1) model.train([[1, 0] * 6000]) s = model.sample([1]) assert isinstance(s, list) print(s) model.analyze([1, 0]) model.save_to_file() model.sample([1]) model = lstm.LSTMModelFromFile('test-simple-long', **lstm_kwargs_1) s = model.sample([1]) assert isinstance(s, list) print(s) model.analyze([1, 0]) model.train([[1, 0] * 6000]) model.sample([1]) model.analyze([1, 0]) model.save_to_file() model.train([[1, 0]]) model.train([[1, 0] * 6000], count=True)
def test_simple_long_skip_padding(lstm_kwargs_1): model = lstm.LSTMModel('test-simple-long', 2, use_long=True, skip_padding=True, **lstm_kwargs_1) model.train([[1, 0] * 1000]) model.train([[1, 0]]) model.save_to_file() model = lstm.LSTMModelFromFile('test-simple-long', **lstm_kwargs_1) model.train([[1, 0] * 1000]) model.train([[1, 0]]) model.save_to_file()
def test_simple_short(lstm_kwargs_1, lstm_kwargs_2): model = lstm.LSTMModel('test-simple', 2, **lstm_kwargs_1) model.train([[1, 0]] * 1000) s = model.sample() assert isinstance(s, list) print(s) model.analyze([1, 0]) model.save_to_file() model.sample([1]) model = lstm.LSTMModelFromFile('test-simple', **lstm_kwargs_1) s = model.sample() assert isinstance(s, list) print(s) model.analyze([1, 0]) model.train([[1, 0]] * 1000) model.sample() model.analyze([1, 0]) model.save_to_file() # Double saving is ok model.save_to_file() model = lstm.LSTMModel('test-simple', 2, **lstm_kwargs_1) model.train([[1, 0]] * 1000, autosave=30) model = lstm.LSTMModel('test-simple', 2, **lstm_kwargs_2) model.train([[1, 0]] * 1000, autosave=30) model.train([[1, 0]] * 1000, autosave=True) model = lstm.LSTMModel('test-simple', 2, **lstm_kwargs_2) model.train([[1, 0]] * 1000, autosave=30, count=True) model = lstm.LSTMModelFromFile('test-simple-copy', from_name='test-simple', training_steps=100, **lstm_kwargs_1) model.train([[1, 0]] * 1000, autosave=30)
def test_simple_string_short(lstm_kwargs_1): model = lstm.LSTMModelString('test-simple-string', **lstm_kwargs_1) model.train(['ab'] * 50) s = model.sample() assert tools.is_string_or_bytes(s) print(s) model.analyze('ab') model.save_to_file() model.sample('a') model = lstm.LSTMModelFromFile('test-simple-string', **lstm_kwargs_1) s = model.sample() assert tools.is_string_or_bytes(s) print(s) model.analyze('ab') model.train(['ab'] * 50) model.sample() model.analyze('ab') model.save_to_file()
def test_simple_alphabet_short(lstm_kwargs_1): model = lstm.LSTMModelAlphabet('test-simple-alphabet', ['hey', 'yo'], **lstm_kwargs_1) model.train([['hey', 'yo']] * 50) s = model.sample() assert isinstance(s, list) print(s) model.analyze(['hey', 'yo']) model.save_to_file() model.sample(['hey']) model = lstm.LSTMModelFromFile('test-simple-alphabet', **lstm_kwargs_1) s = model.sample() assert isinstance(s, list) print(s) model.analyze(['hey', 'yo']) model.train([['hey', 'yo']] * 50) model.sample() model.analyze(['hey', 'yo']) model.save_to_file()
def test_text_file_alphabet_file(lstm_kwargs_1): path = os.path.join(config.ROOT_DIR, 'tests', 'small.txt') model = lstm.LSTMModelTextFileAlphabetFile('test-text-file-alphabet-file', path, **lstm_kwargs_1) model.train([path]) s = model.sample('a') assert tools.is_string_or_bytes(s) print(s) model.analyze('ab') model.save_to_file() model = lstm.LSTMModelFromFile('test-text-file-alphabet-file', **lstm_kwargs_1) s = model.sample('a') assert tools.is_string_or_bytes(s) print(s) model.analyze('ab') model.train([path]) model.sample('a') model.analyze('ab') model.save_to_file()