omniglot_database = OmniglotDatabase(random_seed=47, num_train_classes=1200, num_val_classes=100) maml_umtra = MAMLUMTRA(database=omniglot_database, network_cls=SimpleModel, n=5, k=1, k_val_ml=5, k_val_val=15, k_val_test=15, k_test=5, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.4, num_steps_validation=5, save_after_iterations=1000, meta_learning_rate=0.001, report_validation_frequency=200, log_train_images_after_iteration=200, number_of_tasks_val=100, number_of_tasks_test=1000, clip_gradients=False, experiment_name='omniglot', val_seed=42, val_test_batch_norm_momentum=0.0) shape = (28, 28, 1) maml_umtra.visualize_umtra_task(shape, num_tasks_to_visualize=2) maml_umtra.train(iterations=5000)
# import tensorflow as tf # tf.config.experimental_run_functions_eagerly(True) fungi_database = FungiDatabase() maml_umtra = MAMLUMTRA(database=fungi_database, network_cls=MiniImagenetModel, n=5, k_ml=1, k_val_ml=1, k_val=1, k_val_val=15, k_test=5, k_val_test=15, meta_batch_size=4, num_steps_ml=5, lr_inner_ml=0.05, num_steps_validation=5, save_after_iterations=15000, meta_learning_rate=0.001, report_validation_frequency=250, log_train_images_after_iteration=1000, num_tasks_val=100, clip_gradients=True, experiment_name='fungi', val_seed=42, val_test_batch_norm_momentum=0.0) shape = (84, 84, 3) # maml_umtra.visualize_umtra_task(shape, num_tasks_to_visualize=2) maml_umtra.train(iterations=60000)