Пример #1
0
def main():
    # Get the arguments
    args = parse_arguments()

    # Get the training parameters
    class_size = args.class_size if args.class_size is not None else DEFAULT_CLASS_SIZE

    # Get the train and dev feature files
    train_files = args.train_files
    dev_files = args.dev_files

    # Create the list of models to train
    models = []
    if args.svm: models.append(svm.SVM())
    if args.mlp: models.append(mlp.MLP(10))

    # If there no development files, perform cross-validation
    if dev_files == None:
        train_data, train_labels = utils.read_features(train_files)

        models = train_cross_validation(train_data, train_labels, models,
                                        class_size)
    # Otherwise use the development files
    else:
        train_data, train_labels = utils.read_features(train_files)
        dev_data, dev_labels = utils.read_features(dev_files)

        train(train_data, train_labels, dev_data, dev_labels)
Пример #2
0
 def __init__(self, args):
     self.generator = resunet.ResUNet(args.in_ch, args.out_ch,
                                      args.base_kernel, args.is_leaky)
     self.discriminator = mlp.MLP(args.in_ch + args.out_ch,
                                  args.patch_layers, args.base_kernel)
     # Initialize weights
     self.generator.apply(weights_init_normal)
     self.discriminator.apply(weights_init_normal)
Пример #3
0
def main():
    # Read the arguments
    args = parse_arguments()

    # Get the class size
    class_size = args.class_size if args.class_size is not None else DEFAULT_CLASS_SIZE

    # Read the features from the test files
    test_files = args.test_files

    # Ensure at least 1 test file is passed in
    if test_files is None:
        print 'Error. Please provide testing feature files'
        exit(1)

    test_data, test_labels = utils.read_features(test_files)
    test_data, test_labels, map = utils.partition(test_data, test_labels,
                                                  class_size)

    # Read and load the model
    if args.svm:
        model = svm.SVM()
        model.load(args.model)
    if args.mlp:
        model = mlp.MLP(10)
        model.load(args.model)

    # Ensure a model was created
    if model is None:
        print 'Error. Model invalid'
        exit(1)

    # Test the model
    predictions = model.predict(test_data)
    accuracy = 1.0 * sum([
        1
        for label, predict in zip(test_labels, predictions) if label == predict
    ]) / len(predictions)

    # Output results
    print 'Accuracy is: ', accuracy
Пример #4
0
if __name__ == '__main__':
    env_name = 'CartPole-v0'

    environment = Environment(
        environment=gym.make(env_name),
        agent=None,
        verbose=True,
        max_steps=200,
        capacity=500,
        # representation_method='one_hot_encoding',
        representation_method='observation',
    )

    model_mlp = mlps.MLP(input_dimension=environment.get_input_dimension(),
                         hidden_dimension=100,
                         n_hidden_layers=1,
                         n_actions=environment.n_actions,
                         dropout=0.)

    model = model_mlp
    agent = agents.DQNAgent(model=model,
                            optimiser=eligibility.EligibilitySGD(
                                model.parameters(),
                                lr=1e-3,
                                gamma=0.99,
                                lambd=0.9),
                            gamma=.99,
                            temperature=3.,
                            algorithm='qlearning',
                            n_actions=environment.n_actions,
                            terminal_state=environment.max_obs,
Пример #5
0
def load_model(model, dataset, actfun, k, p, g, num_params, perm_method, device, resnet_ver, resnet_width, verbose):

    model_params = []

    if dataset == 'mnist' or dataset == 'fashion_mnist':
        input_channels, input_dim, output_dim = 1, 28, 10
    elif dataset == 'cifar10' or dataset == 'svhn':
        input_channels, input_dim, output_dim = 3, 32, 10
    elif dataset == 'cifar100':
        input_channels, input_dim, output_dim = 3, 32, 100

    if model == 'nn' or model == 'mlp':
        if dataset == 'mnist' or dataset == 'fashion_mnist':
            input_dim = 784
        elif dataset == 'cifar10' or dataset == 'svhn':
            input_dim = 3072
        elif dataset == 'cifar100':
            input_dim = 3072
        elif dataset == 'iris':
            input_dim, output_dim = 4, 3
        model = mlp.MLP(actfun=actfun,
                        input_dim=input_dim,
                        output_dim=output_dim,
                        k=k,
                        p=p,
                        g=g,
                        num_params=num_params,
                        permute_type=perm_method).to(device)
        model_params.append({'params': model.batch_norms.parameters(), 'weight_decay': 0})
        model_params.append({'params': model.linear_layers.parameters()})
        if actfun == 'combinact':
            model_params.append({'params': model.all_alpha_primes.parameters(), 'weight_decay': 0})

    elif model == 'cnn':
        model = cnn.CNN(actfun=actfun,
                        num_input_channels=input_channels,
                        input_dim=input_dim,
                        num_outputs=output_dim,
                        k=k,
                        p=p,
                        g=g,
                        num_params=num_params,
                        permute_type=perm_method).to(device)

        model_params.append({'params': model.conv_layers.parameters()})
        model_params.append({'params': model.pooling.parameters()})
        model_params.append({'params': model.batch_norms.parameters(), 'weight_decay': 0})
        model_params.append({'params': model.linear_layers.parameters()})
        if actfun == 'combinact':
            model_params.append({'params': model.all_alpha_primes.parameters(), 'weight_decay': 0})

    elif model == 'resnet':
        model = preact_resnet.PreActResNet(resnet_ver=resnet_ver,
                                           actfun=actfun,
                                           in_channels=input_channels,
                                           out_channels=output_dim,
                                           k=k,
                                           p=p,
                                           g=g,
                                           permute_type=perm_method,
                                           width=resnet_width,
                                           verbose=verbose).to(device)

        model_params = model.parameters()

    return model, model_params
Пример #6
0
def __do_train(device, train_samples, dev_samples, dev_true_labels_dict, test_samples,
               test_true_labels_dict, type_vocab_train, type_vocab_test, type_infer_train, type_infer_test,
               use_vr, use_hr, n_labelers, n_mlp_layers, mlp_hdim, dropout, margin, learning_rate, batch_size,
               n_iter, lr_gamma):
    mlp_input_dim = 2
    if use_vr:
        mlp_input_dim += 2
    if use_hr:
        mlp_input_dim += 1

    model = mlp.MLP(n_mlp_layers, mlp_input_dim, n_labelers, mlp_hdim, dropout=dropout)
    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'lin1_bn', 'lin2_bn']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.1},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    loss_obj = exputils.BinMaxMarginLoss(pos_margin=margin, neg_margin=margin)
    # optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=learning_rate)

    n_batches = (len(train_samples) + batch_size - 1) // batch_size
    if len(train_samples) == batch_size * (n_batches - 1) + 1:
        n_batches -= 1

    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=n_batches * 10, gamma=lr_gamma)

    n_steps = n_batches * n_iter
    losses = list()
    n_types_train = len(type_vocab_train)
    best_dev_loss, best_dev_acc = 1e5, 0
    best_test_acc, best_test_maf1, best_test_mif1 = 0, 0, 0
    for step in range(n_steps):
        bidx = step % n_batches
        bbeg, bend = bidx * batch_size, min((bidx + 1) * batch_size, len(train_samples))
        batch = train_samples[bbeg:bend]
        cur_batch_size = bend - bbeg

        (pred_logits_tensor, max_logits_tensor, true_label_vecs
         ) = __get_batch_input(device, n_types_train, batch, use_vr, use_hr)
        feats = max_logits_tensor

        model.train()
        ens_logits = model(feats)
        final_logits = ens_labeler_logits(ens_logits, pred_logits_tensor, cur_batch_size)
        # print(ens_logits)
        loss = loss_obj.loss(true_label_vecs, final_logits)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()

        losses.append(loss.data.cpu().numpy())

        if (step + 1) % n_batches == 0:
            acc, loss_dev = 0, 0
            if dev_samples is not None:
                acc, maf1, mif1, _, loss_dev, avg_weights = __eval_ens(
                    device, loss_obj, type_vocab_train, model, type_infer_train, use_vr, use_hr,
                    dev_samples, dev_true_labels_dict)
                best_tag = '*' if acc > best_dev_acc or (acc == best_dev_acc and loss_dev < best_dev_loss) else ''
                # print((step + 1) // n_batches, sum(losses), loss_dev, acc, maf1, mif1, avg_weights, best_tag)
                print('{} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {} {}'.format(
                    (step + 1) // n_batches, sum(losses), loss_dev, acc, maf1, mif1, avg_weights, best_tag))
            if acc > best_dev_acc or (acc == best_dev_acc and loss_dev < best_dev_loss):
                acct, maf1t, mif1t, result_objs, _, _ = __eval_ens(
                    device, None, type_vocab_test, model, type_infer_test, use_vr, use_hr,
                    test_samples, test_true_labels_dict)
                print('TEST {} {} ACC={:.4f} {:.4f} {:.4f}'.format(
                    (step + 1) // n_batches, sum(losses), acct, maf1t, mif1t))

                best_test_acc, best_test_maf1, best_test_mif1 = acct, maf1t, mif1t
                best_dev_acc = acc
                best_dev_loss = loss_dev
            losses = list()
            # random.shuffle(train_samples)
    print('test acc={:.4f} maf1={:.4f} mif1={:.4f}'.format(best_test_acc, best_test_maf1, best_test_mif1))
    return best_test_acc, best_test_maf1, best_test_mif1
Пример #7
0
    test_set = AIRBNB(path='../data/',
                      data_set='test_' + dataset_name + '.csv')
    test_loader = DataLoader(test_set,
                             batch_size=len(test_set),
                             shuffle=False,
                             num_workers=0,
                             pin_memory=True)
    n_features = test_set.get_n_features()

# ########## Net Init ##########
print('Network initialization...')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Running on ' + device.type)

model = mlp.MLP(n_features,
                n_hidden_units=args['hidden'],
                activation_function=args['activation'])

# MultiGPU
# if torch.cuda.device_count() > 1:
#     print('We are using', torch.cuda.device_count(), 'GPUs')
#     model = nn.DataParallell(model)
model = model.to(device)

# ########## TRAIN VAL LOOP ##########
if train_mode:
    print('Trainer initialization...')
    trainer = Trainer(device, model, train_loader, val_loader, args)
    trainer.train_model()

# ########## TEST ##########