Пример #1
0
 def __init__(self, config, constants):
     AbstractModel.__init__(self, config, constants)
     self.none_action = config["num_actions"]
     self.image_module = ImagePositionResnetModule(
         image_emb_size=constants["image_emb_dim"],
         input_num_channels=3 * constants["max_num_images"],
         image_height=config["image_height"],
         image_width=config["image_width"])
     if config["use_pointer_model"]:
         self.text_module = TextPointerModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     else:
         self.text_module = TextSimpleModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     # total_emb_size = (constants["image_emb_dim"]
     #                   + constants["lstm_emb_dim"])
     total_emb_size = constants["image_emb_dim"]
     final_module = MultimodalSimplePositionModule(
         image_module=self.image_module,
         text_module=self.text_module,
         total_emb_size=total_emb_size,
         num_grid_x=8,
         num_grid_y=8,
         num_grid_pose=24)
     self.final_module = final_module
     if torch.cuda.is_available():
         self.image_module.cuda()
         self.text_module.cuda()
         self.final_module.cuda()
Пример #2
0
    def __init__(self, config, constants):
        AbstractModel.__init__(self, config, constants)
        self.none_action = config["num_actions"]

        self.text_module = TextSimpleModule(
            emb_dim=constants["word_emb_dim"],
            hidden_dim=constants["lstm_emb_dim"],
            vocab_size=config["vocab_size"])

        self.image_module = ImageResnetModule(
            image_emb_size=constants["image_emb_dim"],
            input_num_channels=3,
            image_height=config["image_height"],
            image_width=config["image_width"],
            using_recurrence=True)

        total_emb_size = constants[
            "lstm_emb_dim"]  #+ constants["image_emb_dim"]
        final_module = MultimodalTextClassificationModule(
            text_module=self.text_module,
            image_module=self.image_module,
            total_emb_size=total_emb_size)
        self.final_module = final_module
        if torch.cuda.is_available():
            self.text_module.cuda()
            self.image_module.cuda()
            self.final_module.cuda()
Пример #3
0
    def __init__(self, config, constants):

        AbstractModel.__init__(self, config, constants)
        self.none_action = config["num_actions"]

        num_channels, image_height, image_width = 3, 3, 3

        self.text_module = ChaplotTextModule(emb_dim=32,
                                             hidden_dim=256,
                                             vocab_size=config["vocab_size"],
                                             image_height=image_height,
                                             image_width=image_width)

        self.final_module = FinalModule(self.text_module)

        if False:  # config["do_object_detection"]:
            self.landmark_names = get_all_landmark_names()
            self.object_detection_module = PixelIdentificationModule(
                num_channels=num_channels, num_objects=67)
        else:
            self.object_detection_module = None

        if torch.cuda.is_available():
            self.text_module.cuda()
            self.final_module.cuda()
            if self.object_detection_module is not None:
                self.object_detection_module.cuda()
Пример #4
0
    def __init__(self, config, constants):
        AbstractModel.__init__(self, config, constants)
        self.radius_model = RadiusModule(15)
        self.angle_model = AngleModule(48)
        num_actions = config["num_actions"]
        self.goal_module = GoalPositionModule(
            radius_module=self.radius_model,
            angle_module=self.angle_model,
            num_actions=num_actions)

        if torch.cuda.is_available():
            self.goal_module.cuda()
 def __init__(self, config, constants):
     AbstractModel.__init__(self, config, constants)
     self.none_action = config["num_actions"]
     self.image_module = ImageTextKernelResnetModule(
         image_emb_size=constants["image_emb_dim"],
         input_num_channels=3,
         image_height=config["image_height"],
         image_width=config["image_width"],
         text_emb_size=constants["lstm_emb_dim"],
         using_recurrence=True)
     self.image_recurrence_module = RecurrenceSimpleModule(
         input_emb_dim=constants["image_emb_dim"],
         output_emb_dim=constants["image_emb_dim"])
     if config["use_pointer_model"]:
         self.text_module = TextPointerModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     else:
         self.text_module = TextSimpleModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     self.action_module = ActionSimpleModule(
         num_actions=config["num_actions"],
         action_emb_size=constants["action_emb_dim"])
     if config["use_pointer_model"]:
         total_emb_size = (constants["image_emb_dim"] +
                           4 * constants["lstm_emb_dim"] +
                           constants["action_emb_dim"])
     else:
         total_emb_size = (constants["image_emb_dim"] +
                           constants["lstm_emb_dim"] +
                           constants["action_emb_dim"])
     final_module = MultimodalTextKernelRecurrentSimpleModule(
         image_module=self.image_module,
         image_recurrence_module=self.image_recurrence_module,
         text_module=self.text_module,
         action_module=self.action_module,
         total_emb_size=total_emb_size,
         num_actions=config["num_actions"])
     self.final_module = final_module
     if torch.cuda.is_available():
         self.image_module.cuda()
         self.image_recurrence_module.cuda()
         self.text_module.cuda()
         self.action_module.cuda()
         self.final_module.cuda()
    def __init__(self, config, constants):
        AbstractModel.__init__(self, config, constants)
        self.none_action = config["num_actions"]
        landmark_names = get_all_landmark_names()
        self.radius_module = RadiusModule(15)
        self.angle_module = AngleModule(48)
        self.landmark_module = LandmarkModule(63)

        self.image_module = ImageResnetModule(
            image_emb_size=constants["image_emb_dim"],
            input_num_channels=3,
            image_height=config["image_height"],
            image_width=config["image_width"],
            using_recurrence=True)
        self.image_recurrence_module = RecurrenceSimpleModule(
            input_emb_dim=constants["image_emb_dim"],
            output_emb_dim=constants["image_emb_dim"])

        self.text_module = SymbolicInstructionModule(
            radius_embedding=self.radius_module,
            theta_embedding=self.angle_module,
            landmark_embedding=self.landmark_module)
        self.action_module = ActionSimpleModule(
            num_actions=config["num_actions"],
            action_emb_size=constants["action_emb_dim"])
        total_emb_size = (constants["image_emb_dim"]
                          + 32 * 4
                          + constants["action_emb_dim"])
        final_module = MultimodalRecurrentSimpleModule(
            image_module=self.image_module,
            image_recurrence_module=self.image_recurrence_module,
            text_module=self.text_module,
            action_module=self.action_module,
            total_emb_size=total_emb_size,
            num_actions=config["num_actions"])
        self.final_module = final_module
        if torch.cuda.is_available():
            self.image_module.cuda()
            self.text_module.cuda()
            self.action_module.cuda()
            self.final_module.cuda()
            self.radius_module.cuda()
            self.angle_module.cuda()
            self.landmark_module.cuda()
Пример #7
0
 def __init__(self, config, constants):
     AbstractModel.__init__(self, config, constants)
     self.none_action = config["num_actions"]
     landmark_names = get_all_landmark_names()
     self.radius_module = RadiusModule(15)
     self.angle_module = AngleModule(48)
     self.landmark_module = LandmarkModule(63)
     self.image_module = SymbolicImageModule(
         landmark_names=landmark_names,
         radius_module=self.radius_module,
         angle_module=self.angle_module,
         landmark_module=self.landmark_module)
     if config["use_pointer_model"]:
         self.text_module = TextPointerModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     else:
         self.text_module = TextSimpleModule(
             emb_dim=constants["word_emb_dim"],
             hidden_dim=constants["lstm_emb_dim"],
             vocab_size=config["vocab_size"])
     self.action_module = ActionSimpleModule(
         num_actions=config["num_actions"],
         action_emb_size=constants["action_emb_dim"])
     total_emb_size = (32 * 3 * 63
                       + constants["lstm_emb_dim"]
                       + constants["action_emb_dim"])
     final_module = MultimodalSimpleModule(
         image_module=self.image_module,
         text_module=self.text_module,
         action_module=self.action_module,
         total_emb_size=total_emb_size,
         num_actions=config["num_actions"])
     self.final_module = final_module
     if torch.cuda.is_available():
         self.image_module.cuda()
         self.text_module.cuda()
         self.action_module.cuda()
         self.final_module.cuda()
         self.radius_module.cuda()
         self.angle_module.cuda()
         self.landmark_module.cuda()
 def __init__(self, config, constants):
     AbstractModel.__init__(self, config, constants)
     self.none_action = config["num_actions"]
     landmark_names = get_all_landmark_names()
     self.radius_module = RadiusModule(15)
     self.angle_module = AngleModule(48)
     self.landmark_module = LandmarkModule(63)
     self.image_module = SymbolicImageModule(
         landmark_names=landmark_names,
         radius_module=self.radius_module,
         angle_module=self.angle_module,
         landmark_module=self.landmark_module)
     self.text_module = SymbolicInstructionModule(
         radius_embedding=self.radius_module,
         theta_embedding=self.angle_module,
         landmark_embedding=self.landmark_module)
     self.action_module = ActionSimpleModule(
         num_actions=config["num_actions"],
         action_emb_size=constants["action_emb_dim"])
     total_emb_size = (32 * 3 * 63
                       + 32 * 4
                       + constants["action_emb_dim"])
     final_module = MultimodalSimpleModule(
         image_module=self.image_module,
         text_module=self.text_module,
         action_module=self.action_module,
         total_emb_size=total_emb_size,
         num_actions=config["num_actions"])
     self.final_module = final_module
     if torch.cuda.is_available():
         self.image_module.cuda()
         self.text_module.cuda()
         self.action_module.cuda()
         self.final_module.cuda()
         self.radius_module.cuda()
         self.angle_module.cuda()
         self.landmark_module.cuda()