def train(epochs, train_loader, dev_loader, lr, seed, log_interval,
          output_dir):
    """Train the model. Store snapshot models in the output_dir alongside
    evaluations on the dev set after each epoch
    """

    model = Net()

    optimizer = optim.Adam(model.parameters(), lr=lr)

    measure_size(model)

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda:0" if use_cuda else "cpu")
    print("Using device: ", device)

    if use_cuda:
        torch.cuda.manual_seed(seed)
    else:
        torch.manual_seed(seed)

    #torch.backends.cudnn.benchmark = False
    #torch.backends.cudnn.deterministic = True

    model.to(device)

    for epoch in range(1, epochs):

        model.train()
        total_loss = 0.0
        for batch_idx, (data, target) in enumerate(train_loader):
            if use_cuda:
                data, target = data.to(device), target.to(device)
            data = data.unsqueeze_(1)

            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            total_loss += loss.item()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))

        print("Total loss = %.6f" % (total_loss / len(train_loader.dataset)))

        test(model, dev_loader,
             os.path.join(output_dir, 'dev-eer-' + str(epoch)))

        torch.save(model, os.path.join(output_dir,
                                       'iter' + str(epoch) + '.mdl'))
Пример #2
0
class Trainer(object):
    def __init__(self, args):
        self.args = args
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.prepare_data()
        self.setup_train()

    def prepare_data(self):
        train_val = MnistDataset(
            self.args.train_image_file,
            self.args.train_label_file,
            transform=transforms.Compose([ToTensor()]),
        )
        train_len = int(0.8 * len(train_val))
        train_ds, val_ds = torch.utils.data.random_split(
            train_val, [train_len, len(train_val) - train_len]
        )
        print("Train {}, val {}".format(len(train_ds), len(val_ds)))
        self.train_loader = torch.utils.data.DataLoader(
            train_ds,
            batch_size=self.args.batch_size,
            collate_fn=collate_fn,
            shuffle=True,
        )
        self.val_loader = torch.utils.data.DataLoader(
            val_ds,
            batch_size=self.args.batch_size,
            collate_fn=collate_fn,
            shuffle=False,
        )

    def setup_train(self):
        self.model = Net().to(self.device)
        self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.args.lr)
        self.criterion = nn.CrossEntropyLoss().to(self.device)
        if not os.path.isdir(self.args.ckpt):
            os.mkdir(self.args.ckpt)

    def train_one_epoch(self):
        train_loss = 0.0
        self.model.train()
        for i, sample in enumerate(self.train_loader):
            X, Y_true = sample["X"].to(self.device), sample["Y"].to(self.device)
            self.optimizer.zero_grad()
            output = self.model(X)
            loss = self.criterion(output, Y_true)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
        return train_loss / len(self.train_loader)

    def evaluate(self):
        val_loss = 0.0
        self.model.eval()
        predicts = []
        truths = []
        with torch.no_grad():
            for i, sample in enumerate(self.val_loader):
                X, Y_true = sample["X"].to(self.device), sample["Y"].to(self.device)
                output = self.model(X)
                loss = self.criterion(output, Y_true)
                val_loss += loss.item()
                predicts.append(torch.argmax(output, dim=1))
                truths.append(Y_true)
        predicts = torch.cat(predicts, dim=0)
        truths = torch.cat(truths, dim=0)
        acc = torch.sum(torch.eq(predicts, truths))
        return acc / len(predicts), val_loss / (len(self.val_loader))

    def run(self):
        min_loss = 10e4
        max_acc = 0
        for epoch in range(self.args.epochs):
            train_loss = self.train_one_epoch()
            val_acc, val_loss = self.evaluate()

            if val_acc > max_acc:
                max_acc = val_acc
                torch.save(
                    self.model.state_dict(),
                    os.path.join(
                        self.args.ckpt,
                        "{}_{}_{:.4f}.pth".format(self.args.name, epoch, max_acc),
                    ),
                )
            print(
                "Epoch {}, loss {:.4f}, val_acc {:.4f}".format(
                    epoch, train_loss, val_acc
                )
            )