Пример #1
0
def extract_reid_features(reid_model, image, tlbrs):
    if len(tlbrs) == 0:
        return torch.FloatTensor()

    patches = extract_image_patches(image, tlbrs)
    patches = np.asarray(
        [im_preprocess(cv2.resize(p, reid_model.inp_size)) for p in patches],
        dtype=np.float32)

    gpu = net_utils.get_device(reid_model)
    with torch.no_grad():
        im_var = Variable(torch.from_numpy(patches))
        if gpu is not None:
            im_var = im_var.cuda(gpu)
            features = reid_model(im_var).data

    return features
Пример #2
0
def extract_reid_features(reid_model, image, tlbrs):
    if len(tlbrs) == 0:
        return torch.FloatTensor()

    patches = extract_image_patches(image, tlbrs)

    gpu = net_utils.get_device(reid_model)
    if LooseVersion(torch.__version__) > LooseVersion('0.3.1'):
        with torch.no_grad():
            im_var = Variable(torch.from_numpy(patches))
            if gpu is not None:
                im_var = im_var.cuda(gpu).float()
            features = reid_model(im_var).data
    else:
        im_var = Variable(torch.from_numpy(patches), volatile=True)
        if gpu is not None:
            im_var = im_var.cuda(gpu)
        features = reid_model(im_var).data

    return features
def appearance_features(appearance_model, image, tlbrs):
    if len(tlbrs) == 0:
        return torch.FloatTensor()

    candidates = extract_candidates(image, tlbrs)
    candidates = np.asarray(
        [im_preprocess(cv2.resize(c, (224, 224))) for c in candidates],
        dtype=np.float32)
    gpu = net_utils.get_device(appearance_model)
    if LooseVersion(torch.__version__) > LooseVersion('0.3.1'):
        with torch.no_grad():
            im_var = Variable(torch.from_numpy(candidates))
            if gpu is not None:
                im_var = im_var.cuda(gpu)
            features = appearance_model(im_var).data

    else:
        im_var = Variable(torch.from_numpy(candidates), volatile=True)
        if gpu is not None:
            im_var = im_var.cuda(gpu)
        features = appearance_model(im_var).data

    return features