np.min(image_s_trains), np.max(image_s_trains)))
            print("[image_t_trains] shape={}, dtype={}, min={}, max={}".format(
                image_t_trains.shape, image_t_trains.dtype,
                np.min(image_t_trains), np.max(image_t_trains)))
            print("[image_s_valids] shape={}, dtype={}, min={}, max={}".format(
                image_s_valids.shape, image_s_valids.dtype,
                np.min(image_s_valids), np.max(image_s_valids)))
            print("[image_t_valids] shape={}, dtype={}, min={}, max={}".format(
                image_t_valids.shape, image_t_valids.dtype,
                np.min(image_t_valids), np.max(image_t_valids)))

    #================================
    # モデルの構造を定義する。
    #================================
    with mirrored_strategy.scope():
        model_G = TempleteNetworks(out_dim=3)
        model_G(
            tf.zeros([args.batch_size, args.image_height, args.image_width, 3],
                     dtype=tf.float32))

    #================================
    # loss 設定
    #================================
    with mirrored_strategy.scope():
        loss_mse = tf.keras.losses.MeanSquaredError()

    #================================
    # optimizer 設定
    #================================
    with mirrored_strategy.scope():
        optimizer_G = tf.keras.optimizers.Adam(learning_rate=args.lr,
                              args.dataset_dir,
                              datamode="test",
                              image_height=args.image_height,
                              image_width=args.image_width,
                              data_augument=False,
                              debug=args.debug)
    dloader_test = torch.utils.data.DataLoader(ds_test,
                                               batch_size=args.batch_size_test,
                                               shuffle=False,
                                               num_workers=args.n_workers,
                                               pin_memory=True)

    #================================
    # モデルの構造を定義する。
    #================================
    model_G = TempleteNetworks().to(device)
    if (args.debug):
        print("model_G\n", model_G)

    # モデルを読み込む
    if not args.load_checkpoints_path == '' and os.path.exists(
            args.load_checkpoints_path):
        load_checkpoint(model_G, device, args.load_checkpoints_path)

    #================================
    # モデルの推論
    #================================
    print("Starting Testing Loop...")
    n_print = 1
    model_G.eval()
    for step, inputs in enumerate(tqdm(dloader_test, desc="Samplings")):