def main(input_filepath, output_filepath): # make_data_set(input_filepath, output_filepath) # visualize(output_filepath) # create_trained_model(output_filepath) print( predict( "my cat doest like the milk that I bought from the store yesterday" ))
def main(): train, test, words, users = make_dataset.main() X, y, final_test = build_features.main(train, test, words, users) pipeline = train_model.fit(X, y) submissions = predict_model.predict(pipeline, final_test) save_submission.save(submissions)
def full_workflow(historical=True): # Create dataset df_canonical = build_features.make() build_features.persist(df_canonical) # Normalize dataset df_normalized = normalize_features.make() normalize_features.persist(df_normalized) if historical is True: (train_dataset, train_labels), ( test_dataset, test_labels ) = split_dataset.split_training_data_randomly_with_seed(df_normalized) # Train model model = train_model.make("dev") train_model.persist(model) # Create predictions predictions = predict_model.predict() # Evaluate predictions predict_model.evaluate_predictions(predictions, test_labels) else: train_dataset, train_labels = split_dataset.pop_label(df_normalized) test_dataset = build_features.make(build_test_game_data.make()) normalized_test_dataset = normalize_features.make(test_dataset) normalized_test_dataset = add_dummies(normalized_test_dataset, train_dataset) # Train model model = train_model.make("test", train_dataset, train_labels) train_model.persist(model) # Create predictions predictions = predict_model.predict(normalized_test_dataset) df_predictions = build_test_output(test_dataset, predictions) fr = ProcessedFilePersistence('2019Predictions.csv') fr.write_to_csv(df_predictions) build_bracket_output()
build_data() create_freq_chart() create_wordclouds() transform_data() train_model(algorithm="svm", method="bag_of_words") test_model(algorithm="svm", method="bag_of_words") train_model(algorithm="knn", method="bag_of_words") test_model(algorithm="knn", method="bag_of_words") train_model(algorithm="naive_bayes", method="bag_of_words") test_model(algorithm="naive_bayes", method="bag_of_words") train_model(algorithm="linear_regression", method="bag_of_words") test_model(algorithm="linear_regression", method="bag_of_words") train_model(algorithm="random_forest", method="bag_of_words") test_model(algorithm="random_forest", method="bag_of_words") train_model(algorithm="svm", method="tf_idf") test_model(algorithm="svm", method="tf_idf") train_model(algorithm="knn", method="tf_idf") test_model(algorithm="knn", method="tf_idf") train_model(algorithm="naive_bayes", method="tf_idf") test_model(algorithm="naive_bayes", method="tf_idf") train_model(algorithm="linear_regression", method="tf_idf") test_model(algorithm="linear_regression", method="tf_idf") train_model(algorithm="random_forest", method="tf_idf") test_model(algorithm="random_forest", method="tf_idf") create_results_chart() txt = "Fahrettin Koca yeni tedbirlere yönelik açıklamalarda bulundu." result = predict(txt, algorithm="svm", method="bag_of_words") print(f"Tahmin sonucu: {result}")
def predict(customer_id: int, month: int): predict_model.predict(customer_id, month)