def __init__(self, args: DictConfig):
        super().__init__()
        self.hparams = args  # Will be logged to mlflow

        # make sure the flags are properly used
        assert not (args.exp.opencv_display and
                    not args.exp.viz), 'Must use --viz with --opencv_display'
        assert not (args.exp.opencv_display and not args.exp.fast_viz
                    ), 'Cannot use --opencv_display without --fast_viz'
        assert not (args.exp.fast_viz
                    and not args.exp.viz), 'Must use --viz with --fast_viz'
        assert not (args.exp.fast_viz and args.exp.viz_extension
                    == 'pdf'), 'Cannot use pdf extension with --fast_viz'

        # store viz results
        # eval_output_dir = Path(f'{ROOT_PATH}/' + args.data.eval_output_dir)
        # eval_output_dir.mkdir(exist_ok=True, parents=True)
        # print('Will write visualization images to directory \"{}\"'.format(eval_output_dir))

        self.superglue = SuperGlue(args.model.superglue)
        self.superpoint = SuperPoint(args.model.superpoint)
        self.lr = None
Пример #2
0
    def __init__(self, config={}):
        self.config = self.default_config
        self.config = {**self.config, **config}
        #self.config = merge_two_dicts(self.config, config)
        #print(self.config)
        logging.info("SuperGlue matcher config: ")
        logging.info(self.config)

        self.device = 'cuda' if torch.cuda.is_available(
        ) and self.config["cuda"] else 'cpu'

        assert self.config['weights'] in ['indoor', 'outdoor']
        path_ = path.abspath(
            path.join(__file__, "../..")
        ) + '/models/SuperGluePretrainedNetwork/models/weights/superglue_{}.pth'.format(
            self.config['weights'])
        self.config["path"] = path_

        logging.info("creating SuperGlue matcher...")
        self.superglue = SuperGlue(self.config).to(self.device)
class SuperGlueLightning(LightningModule):
    def __init__(self, args: DictConfig):
        super().__init__()
        self.hparams = args  # Will be logged to mlflow

        # make sure the flags are properly used
        assert not (args.exp.opencv_display and
                    not args.exp.viz), 'Must use --viz with --opencv_display'
        assert not (args.exp.opencv_display and not args.exp.fast_viz
                    ), 'Cannot use --opencv_display without --fast_viz'
        assert not (args.exp.fast_viz
                    and not args.exp.viz), 'Must use --viz with --fast_viz'
        assert not (args.exp.fast_viz and args.exp.viz_extension
                    == 'pdf'), 'Cannot use pdf extension with --fast_viz'

        # store viz results
        # eval_output_dir = Path(f'{ROOT_PATH}/' + args.data.eval_output_dir)
        # eval_output_dir.mkdir(exist_ok=True, parents=True)
        # print('Will write visualization images to directory \"{}\"'.format(eval_output_dir))

        self.superglue = SuperGlue(args.model.superglue)
        self.superpoint = SuperPoint(args.model.superpoint)
        self.lr = None

    def prepare_data(self) -> None:
        self.train_set = SparseDataset(
            f'{ROOT_PATH}/' + self.hparams.data.train_path,
            self.hparams.model.superpoint.max_keypoints,
            self.hparams.data.resize, self.hparams.data.resize_float,
            self.hparams.model.superglue.min_keypoints, None, self.superpoint)
        self.val_set = SparseDataset(
            f'{ROOT_PATH}/' + self.hparams.data.val_path,
            self.hparams.model.superpoint.max_keypoints,
            self.hparams.data.resize, self.hparams.data.resize_float,
            self.hparams.model.superglue.min_keypoints, None, self.superpoint)
        self.train_set.files = self.train_set.files[:self.hparams.data.
                                                    train_size]
        self.val_set.files = self.val_set.files[:self.hparams.data.val_size]

    def train_dataloader(self) -> torch.utils.data.DataLoader:
        return torch.utils.data.DataLoader(
            dataset=self.train_set,
            shuffle=True,
            batch_size=self.hparams.data.batch_size.train,
            drop_last=True)

    def val_dataloader(self) -> torch.utils.data.DataLoader:
        return torch.utils.data.DataLoader(
            dataset=self.val_set,
            shuffle=True,
            batch_size=self.hparams.data.batch_size.val,
            drop_last=True)

    def configure_optimizers(self):
        if self.lr is not None:
            self.hparams.optimizer.learning_rate = self.lr
        optimizer = torch.optim.Adam(self.superglue.parameters(),
                                     lr=self.hparams.optimizer.learning_rate)
        return optimizer

    def training_step(self, batch, batch_ind):

        for k in batch:
            if k != 'file_name' and k != 'image0' and k != 'image1':
                if type(batch[k]) == torch.Tensor:
                    batch[k] = Variable(batch[k])
                else:
                    batch[k] = Variable(torch.stack(batch[k]))

        # print(batch['keypoints0'].shape)
        data = self.superglue(batch)
        batch = {**batch, **data}
        # print(batch['keypoints0'].shape)

        if batch['skip_train']:  # image has no keypoint
            batch['loss'] = torch.zeros(1, requires_grad=True).type_as(
                batch['scores0'])
            return batch['loss']

        # Loss & Metrics
        self.log('train_hits_1',
                 hits_at_one(batch).mean(),
                 on_epoch=False,
                 on_step=True,
                 sync_dist=True)
        self.log('train_loss_m',
                 batch['loss_m'],
                 on_epoch=False,
                 on_step=True,
                 sync_dist=True)
        self.log('train_loss_um',
                 batch['loss_um'],
                 on_epoch=False,
                 on_step=True,
                 sync_dist=True)
        self.log('train_loss',
                 batch['loss'],
                 on_epoch=False,
                 on_step=True,
                 sync_dist=True)
        self.log('bin_score',
                 self.superglue.bin_score,
                 on_epoch=False,
                 on_step=True,
                 sync_dist=True)
        return batch['loss']

    def validation_step(self, batch, batch_ind):

        for k in batch:
            if k != 'file_name' and k != 'image0' and k != 'image1':
                if type(batch[k]) != torch.Tensor:
                    batch[k] = torch.stack(batch[k])

        data = self.superglue(batch)
        batch = {**batch, **data}

        if batch['skip_train']:  # image has no keypoint
            batch['loss'] = torch.zeros(1).type_as(batch['scores0'])
            return batch['loss']

        # Loss & Metrics
        self.log('val_hits_1',
                 hits_at_one(batch).mean(),
                 on_epoch=True,
                 on_step=False,
                 sync_dist=True)
        self.log('val_loss',
                 batch['loss'],
                 on_epoch=True,
                 on_step=False,
                 sync_dist=True)
        self.log('val_loss_m',
                 batch['loss_m'],
                 on_epoch=True,
                 on_step=False,
                 sync_dist=True)
        self.log('val_loss_um',
                 batch['loss_um'],
                 on_epoch=True,
                 on_step=False,
                 sync_dist=True)
        return batch['loss']

    @rank_zero_only
    def on_train_epoch_end(self, outputs) -> None:
        for eval_data in self.hparams.eval:

            with open(f'{ROOT_PATH}/' + eval_data.pairs_list, 'r') as f:
                pairs = [l.split() for l in f.readlines()]

            if eval_data.max_length > -1:
                pairs = pairs[0:np.min([len(pairs), eval_data.max_length])]

            if eval_data.shuffle:
                random.Random(0).shuffle(pairs)

            if not all([len(p) == 38 for p in pairs]):
                raise ValueError(
                    'All pairs should have ground truth info for evaluation.'
                    'File \"{}\" needs 38 valid entries per row'.format(
                        eval_data.pairs_list))

            # Load the SuperPoint and SuperGlue models.
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            print('Running inference on device \"{}\"'.format(device))
            config = {
                'superpoint': {
                    'nms_radius': eval_data.nms_radius,
                    'keypoint_threshold': eval_data.keypoint_threshold,
                    'max_keypoints': eval_data.max_keypoints
                },
                'superglue': self.hparams.model.superglue,
            }
            matching = Matching(config).eval().to(device)
            matching.superglue.load_state_dict(self.superglue.state_dict())

            # Create the output directories if they do not exist already.
            data_dir = Path(f'{ROOT_PATH}/' + eval_data.data_dir)
            # moving_dir = Path(f'{ROOT_PATH}/' + 'data/ScanNet/test_subset')
            print('Looking for data in directory \"{}\"'.format(data_dir))
            results_dir = Path(os.getcwd() + '/' + eval_data.results_dir)
            results_dir.mkdir(exist_ok=True, parents=True)
            print('Will write matches to directory \"{}\"'.format(results_dir))

            timer = AverageTimer(newline=True)
            for i, pair in enumerate(pairs):
                name0, name1 = pair[:2]
                stem0, stem1 = Path(name0).stem, Path(name1).stem
                matches_path = results_dir / '{}_{}_matches.npz'.format(
                    stem0, stem1)
                eval_path = results_dir / '{}_{}_evaluation.npz'.format(
                    stem0, stem1)
                viz_path = results_dir / '{}_{}_matches.{}'.format(
                    stem0, stem1, self.hparams.exp.viz_extension)
                viz_eval_path = results_dir / \
                                '{}_{}_evaluation.{}'.format(stem0, stem1, self.hparams.exp.viz_extension)

                # Handle --cache logic.
                do_match = True
                do_eval = True
                do_viz = self.hparams.exp.viz
                do_viz_eval = self.hparams.exp.viz
                # if opt.cache:
                #     if matches_path.exists():
                #         try:
                #             results = np.load(matches_path)
                #         except:
                #             raise IOError('Cannot load matches .npz file: %s' %
                #                           matches_path)
                #
                #         kpts0, kpts1 = results['keypoints0'], results['keypoints1']
                #         matches, conf = results['matches'], results['match_confidence']
                #         do_match = False
                #     if opt.eval and eval_path.exists():
                #         try:
                #             results = np.load(eval_path)
                #         except:
                #             raise IOError('Cannot load eval .npz file: %s' % eval_path)
                #         err_R, err_t = results['error_R'], results['error_t']
                #         precision = results['precision']
                #         matching_score = results['matching_score']
                #         num_correct = results['num_correct']
                #         epi_errs = results['epipolar_errors']
                #         do_eval = False
                #     if opt.viz and viz_path.exists():
                #         do_viz = False
                #     if opt.viz and opt.eval and viz_eval_path.exists():
                #         do_viz_eval = False
                #     timer.update('load_cache')

                if not (do_match or do_eval or do_viz or do_viz_eval):
                    timer.print('Finished pair {:5} of {:5}'.format(
                        i, len(pairs)))
                    continue

                # If a rotation integer is provided (e.g. from EXIF data), use it:
                if len(pair) >= 5:
                    rot0, rot1 = int(pair[2]), int(pair[3])
                else:
                    rot0, rot1 = 0, 0

                # Load the image pair.
                image0, inp0, scales0 = read_image(data_dir / name0,
                                                   eval_data.resize, rot0,
                                                   eval_data.resize_float)
                image1, inp1, scales1 = read_image(data_dir / name1,
                                                   eval_data.resize, rot1,
                                                   eval_data.resize_float)

                # Moving
                # os.makedirs(os.path.dirname(moving_dir / name0), exist_ok=True)
                # os.makedirs(os.path.dirname(moving_dir / name1), exist_ok=True)
                # shutil.copy(data_dir / name0, moving_dir / name0)
                # shutil.copy(data_dir / name1, moving_dir / name1)

                if image0 is None or image1 is None:
                    print('Problem reading image pair: {} {}'.format(
                        data_dir / name0, data_dir / name1))
                    exit(1)
                timer.update('load_image')

                if do_match:
                    # Perform the matching.
                    with torch.no_grad():
                        pred = matching({
                            'image0': inp0.cuda(),
                            'image1': inp1.cuda()
                        })
                    pred_np = {}
                    for (k, v) in pred.items():
                        if isinstance(v, list):
                            pred_np[k] = v[0].cpu().numpy()
                        elif isinstance(v, torch.Tensor):
                            pred_np[k] = v[0].cpu().numpy()
                    pred = pred_np
                    # pred = {k: v[0].cpu().numpy() for k, v in pred.items() if isinstance(v, torch.Tensor)}
                    kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
                    matches, conf = pred['matches0'], pred['matching_scores0']
                    timer.update('matcher')

                    # Write the matches to disk.
                    out_matches = {
                        'keypoints0': kpts0,
                        'keypoints1': kpts1,
                        'matches': matches,
                        'match_confidence': conf
                    }
                    np.savez(str(matches_path), **out_matches)

                # Keep the matching keypoints.
                valid = matches > -1
                mkpts0 = kpts0[valid]
                mkpts1 = kpts1[matches[valid]]
                mconf = conf[valid]

                if do_eval:
                    # Estimate the pose and compute the pose error.
                    assert len(
                        pair) == 38, 'Pair does not have ground truth info'
                    K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
                    K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
                    T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)

                    # Scale the intrinsics to resized image.
                    K0 = scale_intrinsics(K0, scales0)
                    K1 = scale_intrinsics(K1, scales1)

                    # Update the intrinsics + extrinsics if EXIF rotation was found.
                    if rot0 != 0 or rot1 != 0:
                        cam0_T_w = np.eye(4)
                        cam1_T_w = T_0to1
                        if rot0 != 0:
                            K0 = rotate_intrinsics(K0, image0.shape, rot0)
                            cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
                        if rot1 != 0:
                            K1 = rotate_intrinsics(K1, image1.shape, rot1)
                            cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
                        cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
                        T_0to1 = cam1_T_cam0

                    epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1,
                                                      K0, K1)
                    correct = epi_errs < 5e-4
                    num_correct = np.sum(correct)
                    precision = np.mean(correct) if len(correct) > 0 else 0
                    matching_score = num_correct / len(kpts0) if len(
                        kpts0) > 0 else 0

                    thresh = 1.  # In pixels relative to resized image size.
                    ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh)
                    if ret is None:
                        err_t, err_R = np.inf, np.inf
                    else:
                        R, t, inliers = ret
                        err_t, err_R = compute_pose_error(T_0to1, R, t)

                    # Write the evaluation results to disk.
                    out_eval = {
                        'error_t': err_t,
                        'error_R': err_R,
                        'precision': precision,
                        'matching_score': matching_score,
                        'num_correct': num_correct,
                        'epipolar_errors': epi_errs
                    }
                    np.savez(str(eval_path), **out_eval)
                    timer.update('eval')

                # if do_viz:
                #     # Visualize the matches.
                #     color = cm.jet(mconf)
                #     text = [
                #         'SuperGlue',
                #         'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
                #         'Matches: {}'.format(len(mkpts0)),
                #     ]
                #     if rot0 != 0 or rot1 != 0:
                #         text.append('Rotation: {}:{}'.format(rot0, rot1))
                #
                #     make_matching_plot(
                #         image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
                #         text, viz_path, stem0, stem1, opt.show_keypoints,
                #         opt.fast_viz, opt.opencv_display, 'Matches')
                #
                #     timer.update('viz_match')
                #
                # if do_viz_eval:
                #     # Visualize the evaluation results for the image pair.
                #     color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1)
                #     color = error_colormap(1 - color)
                #     deg, delta = ' deg', 'Delta '
                #     if not opt.fast_viz:
                #         deg, delta = '°', '$\\Delta$'
                #     e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg)
                #     e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg)
                #     text = [
                #         'SuperGlue',
                #         '{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t),
                #         'inliers: {}/{}'.format(num_correct, (matches > -1).sum()),
                #     ]
                #     if rot0 != 0 or rot1 != 0:
                #         text.append('Rotation: {}:{}'.format(rot0, rot1))
                #
                #     make_matching_plot(
                #         image0, image1, kpts0, kpts1, mkpts0,
                #         mkpts1, color, text, viz_eval_path,
                #         stem0, stem1, opt.show_keypoints,
                #         opt.fast_viz, opt.opencv_display, 'Relative Pose')
                #
                #     timer.update('viz_eval')

                timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))

            # Collate the results into a final table and print to terminal.
            pose_errors = []
            precisions = []
            matching_scores = []
            for pair in pairs:
                name0, name1 = pair[:2]
                stem0, stem1 = Path(name0).stem, Path(name1).stem
                eval_path = results_dir / \
                            '{}_{}_evaluation.npz'.format(stem0, stem1)
                results = np.load(eval_path)
                pose_error = np.maximum(results['error_t'], results['error_R'])
                pose_errors.append(pose_error)
                precisions.append(results['precision'])
                matching_scores.append(results['matching_score'])
            thresholds = [5, 10, 20]
            aucs = pose_auc(pose_errors, thresholds)
            aucs = [100. * yy for yy in aucs]
            prec = 100. * np.mean(precisions)
            ms = 100. * np.mean(matching_scores)
            print('Evaluation Results (mean over {} pairs):'.format(
                len(pairs)))
            print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t')
            print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format(
                aucs[0], aucs[1], aucs[2], prec, ms))

            self.log(f'{eval_data.name}/AUC_5',
                     aucs[0],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/AUC_10',
                     aucs[1],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/AUC_20',
                     aucs[2],
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/Prec',
                     prec,
                     on_epoch=True,
                     on_step=False)
            self.log(f'{eval_data.name}/MScore',
                     ms,
                     on_epoch=True,
                     on_step=False)
        },
        'superglue': {
            'weights': opt.superglue,
            'sinkhorn_iterations': opt.sinkhorn_iterations,
            'match_threshold': opt.match_threshold,
        }
    }

    # load training data
    train_set = SparseDataset(opt.train_path, opt.max_keypoints)
    train_loader = torch.utils.data.DataLoader(dataset=train_set,
                                               shuffle=False,
                                               batch_size=opt.batch_size,
                                               drop_last=True)

    superglue = SuperGlue(config.get('superglue', {}))

    if torch.cuda.is_available():
        superglue.cuda()  # make sure it trains on GPU
    else:
        print("### CUDA not available ###")
    optimizer = torch.optim.Adam(superglue.parameters(), lr=opt.learning_rate)
    mean_loss = []

    # start training
    for epoch in range(1, opt.epoch + 1):
        epoch_loss = 0
        superglue.double().train()
        for i, pred in enumerate(train_loader):
            for k in pred:
                if k != 'file_name' and k != 'image0' and k != 'image1':
Пример #5
0
                                      './dataset/warped/',
                                      './dataset/sp/',
                                      numProcess=7)
            dataBuilder.buildAll(opt.train_path,
                                 opt.hand_path,
                                 batchSizeMax=64,
                                 saveFlag=1,
                                 debug=opt.debug)
        train_set = SparseDatasetOffline('./dataset/sp/')
    train_loader = torch.utils.data.DataLoader(dataset=train_set,
                                               shuffle=False,
                                               batch_size=opt.batch_size,
                                               drop_last=True)

    # superpoint = SuperPoint(config.get('superpoint', {}))
    superglue = SuperGlue(config.get('superglue', {}))
    if torch.cuda.is_available():
        # superpoint.cuda()
        superglue.cuda()
    else:
        print("### CUDA not available ###")
    optimizer = torch.optim.Adam(superglue.parameters(), lr=opt.learning_rate)
    N = train_loader.dataset.__len__() // opt.batch_size

    writer = SummaryWriter("./logs/" + opt.tensorboardLabel)
    mean_loss = []
    cudaKey = set([
        'keypoints0', 'keypoints1', 'descriptors0', 'descriptors1', 'scores0',
        'scores1'
    ])
    for epoch in range(0, opt.epoch):
Пример #6
0
            pred = model(data)
            data = {**pred, **data}

            if save_folder is not None:
                if not os.path.isdir(save_folder):
                    os.makedirs(save_folder)
                visualize(data, save_folder)

            result = compute_homography(data,
                                        correctness_thresh=homography_thresh)
            correctness.append(result['correctness'])
            est_H_mean_dist.append(result['mean_dist'])

    correctness_ave = np.array(correctness).mean(axis=0)
    homography_auc = auc(correctness_ave, np.array(homography_thresh))
    return homography_auc, np.mean(est_H_mean_dist)


if __name__ == '__main__':

    superglue = SuperGlue(config={})
    # superglue = torch.load("exp/model_epoch_4_0.0.pth")
    superglue.load_state_dict(
        torch.load("models/weights/superglue_outdoor.pth"))
    superglue.cuda()

    dataloader = hpatches_test()

    homography_auc, mean_dist = validation(superglue, dataloader)
    print(homography_auc, mean_dist)
    # Set data loader
    if opt.detector == 'superpoint':
        train_set = SuperPointDataset("",
                                      image_list='datasets/train.txt',
                                      device='cuda',
                                      max_keypoints=opt.max_keypoints)
    else:
        RuntimeError('Error detector : {}'.format(opt.detector))

    train_loader = torch.utils.data.DataLoader(dataset=train_set,
                                               shuffle=False,
                                               batch_size=opt.batch_size,
                                               drop_last=True)

    superglue = SuperGlue(config.get('superglue', {}))
    superglue.load_state_dict(
        torch.load("models/weights/superglue_outdoor.pth"))

    if torch.cuda.is_available():
        superglue.cuda()
    else:
        print("### CUDA not available ###")

    optimizer = torch.optim.Adam(superglue.parameters(), lr=opt.learning_rate)

    mean_loss = []
    for epoch in range(1, opt.epoch + 1):
        epoch_loss = 0
        superglue.train()
        # train_loader = tqdm(train_loader)
        type=str,
        required=True,
        help='Path to the directory in which the .npz results are written')
    parser.add_argument('--hdf5', type=str)

    opt = parser.parse_args()
    print(opt)

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('Running inference on device {}'.format(device))
    config = {
        'weights': opt.superglue,
        'sinkhorn_iterations': opt.sinkhorn_iterations,
        'match_threshold': opt.match_threshold,
    }
    matcher = SuperGlue(config).eval().to(device)
    # matcher = NearestNeighborMatcher({'mutual_check': True}).eval()

    image_dir = Path(opt.image_dir)
    results_dir = Path(opt.results_dir)
    results_dir.mkdir(exist_ok=True, parents=True)
    if opt.hdf5:
        hfile = h5py.File(str(results_dir / opt.hdf5), 'w')
        feat_file = h5py.File(opt.feature_dir, 'r')

    if opt.pair_list:
        print('Matching from pair list')
        with open(opt.pair_list, 'r') as f:
            pairs = [l.split() for l in f.readlines()]
    else:
        print('Exhaustive matching of all images')