pointcloud_samples=args.pc_samples, res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=50000, batch_size=args.batch_size, num_workers=30) val_dataset = voxelized_data.VoxelizedDataset( 'val', voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=50000, batch_size=args.batch_size, num_workers=30) exp_name = 'i{}_dist-{}sigmas-{}v{}_m{}'.format( 'PC' + str(args.pc_samples) if args.pointcloud else 'Voxels', ''.join(str(e) + '_' for e in args.sample_distribution), ''.join(str(e) + '_' for e in args.sample_sigmas), args.res, args.model) trainer = training.Trainer(net, torch.device("cuda"), train_dataset, val_dataset, exp_name, optimizer=args.optimizer) trainer.train_model(1500)
sample_sigmas=args.sample_sigmas, num_sample_points=50000, batch_size=args.batch_size, num_workers=30) val_dataset = voxelized_data.VoxelizedDataset( 'val', voxelized_pointcloud=args.pointcloud, pointcloud_samples=args.pc_samples, data_path=args.input_dir_val, res=args.res, sample_distribution=args.sample_distribution, sample_sigmas=args.sample_sigmas, num_sample_points=50000, batch_size=args.batch_size, num_workers=30) exp_name = 'i{}_dist-{}sigmas-{}v{}_m{}_{}'.format( 'PC' + str(args.pc_samples) if args.pointcloud else 'Voxels', ''.join(str(e) + '_' for e in args.sample_distribution), ''.join(str(e) + '_' for e in args.sample_sigmas), args.res, args.model, args.name) trainer = training.Trainer(net, Device, train_dataset, val_dataset, exp_name, optimizer=args.optimizer) trainer.train_model(args.epochs)
import models.local_model as model import models.dataloader as dataloader from models import training import argparse import torch import config.config_loader as cfg_loader parser = argparse.ArgumentParser(description='Train Model') parser.add_argument('config', type=str, help='Path to config file.') args = parser.parse_args() cfg = cfg_loader.load(args.config) net = model.get_models()[cfg['model']]() train_dataset = dataloader.VoxelizedDataset('train', cfg) val_dataset = dataloader.VoxelizedDataset('val', cfg) trainer = training.Trainer(net, torch.device("cuda"), train_dataset, val_dataset, cfg['folder_name'], optimizer=cfg['training']['optimizer']) trainer.train_model(1500)
pointcloud_samples=cfg.num_points, data_path=cfg.data_dir, split_file=cfg.split_file, batch_size=cfg.batch_size, num_sample_points=cfg.num_sample_points_training, num_workers=30, sample_distribution=cfg.sample_ratio, sample_sigmas=cfg.sample_std_dev) val_dataset = voxelized_data.VoxelizedDataset('val', res=cfg.input_res, pointcloud_samples=cfg.num_points, data_path=cfg.data_dir, split_file=cfg.split_file, batch_size=cfg.batch_size, num_sample_points=cfg.num_sample_points_training, num_workers=30, sample_distribution=cfg.sample_ratio, sample_sigmas=cfg.sample_std_dev) trainer = training.Trainer(net, torch.device("cuda"), train_dataset, val_dataset, cfg.exp_name, optimizer=cfg.optimizer, lr=cfg.lr) trainer.train_model(cfg.num_epochs)