Пример #1
0
def get_diff_loss(bert_config, input_tensor, masked_lm_positions,
                  masked_lm_weights, loss_base, loss_target):
    base_prob = tf.exp(-loss_base)
    target_prob = tf.exp(-loss_target)

    prob_diff = base_prob - target_prob

    input_tensor = bc.gather_indexes(input_tensor, masked_lm_positions)
    with tf.compat.v1.variable_scope("diff_loss"):

        hidden = bc.dense(bert_config.hidden_size,
                          bc.create_initializer(bert_config.initializer_range),
                          bc.get_activation(
                              bert_config.hidden_act))(input_tensor)

        logits = bc.dense(1,
                          bc.create_initializer(
                              bert_config.initializer_range))(hidden)
        logits = tf.reshape(logits, prob_diff.shape)

    per_example_loss = tf.abs(prob_diff - logits)
    per_example_loss = tf.cast(masked_lm_weights,
                               tf.float32) * per_example_loss
    losses = tf.reduce_sum(per_example_loss, axis=1)
    loss = tf.reduce_mean(losses)

    return loss, per_example_loss, logits
Пример #2
0
def get_next_sentence_output(bert_config, input_tensor, labels):
    """Get loss and log probs for the next sentence prediction."""

    # Simple binary classification. Note that 0 is "next sentence" and 1 is
    # "random sentence". This weight matrix is not used after pre-training.
    with tf.compat.v1.variable_scope("cls/seq_relationship"):
        output_weights = tf.compat.v1.get_variable(
            "output_weights",
            shape=[2, bert_config.hidden_size],
            initializer=bert_common.create_initializer(
                bert_config.initializer_range))
        output_bias = tf.compat.v1.get_variable(
            "output_bias",
            shape=[2],
            initializer=tf.compat.v1.zeros_initializer())

        logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        log_probs = tf.nn.log_softmax(logits, axis=-1)
        labels = tf.reshape(labels, [-1])
        one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
        per_example_loss = -tf.reduce_sum(
            input_tensor=one_hot_labels * log_probs, axis=-1)
        loss = tf.reduce_mean(input_tensor=per_example_loss)
        return (loss, per_example_loss, log_probs)
Пример #3
0
    def __init__(self, config):
        hidden_size = config.hidden_size
        initializer = bc.create_initializer(config.initializer_range)

        attention_head_size = int(hidden_size / config.num_attention_heads)
        self.attention_head_size = attention_head_size
        num_attention_heads = config.num_attention_heads
        self.num_attention_heads = num_attention_heads
        self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
        self.hidden_dropout_prob = config.hidden_dropout_prob

        with tf.compat.v1.variable_scope("attention"):
            with tf.compat.v1.variable_scope("self"):
                self.query_layer = tf.keras.layers.Dense(
                    num_attention_heads * attention_head_size,
                    activation=None,
                    name="query",
                    kernel_initializer=initializer)

                self.key_layer = tf.keras.layers.Dense(
                    num_attention_heads * attention_head_size,
                    activation=None,
                    name="key",
                    kernel_initializer=initializer)
                self.value_layer = tf.keras.layers.Dense(
                    num_attention_heads * attention_head_size,
                    activation=None,
                    name="value",
                    kernel_initializer=initializer)
                with tf.compat.v1.variable_scope("output"):
                    self.output_layer = tf.keras.layers.Dense(
                        config.hidden_size,
                        kernel_initializer=initializer,
                    )
Пример #4
0
def sequence_index_prediction(bert_config, lookup_idx, input_tensor):
    logits = bert_common.dense(2, bert_common.create_initializer(bert_config.initializer_range))(input_tensor)
    log_probs = tf.nn.softmax(logits, axis=2)
    losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=lookup_idx)
    per_example_loss = tf.reduce_sum(losses, axis=1)
    loss = tf.reduce_mean(per_example_loss)

    return loss, per_example_loss, log_probs
def get_pooler(sequence_output, config):
    with tf.compat.v1.variable_scope("pooler"):
        first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1)
        pooled_output = tf.keras.layers.Dense(
            config.hidden_size,
            activation=tf.keras.activations.tanh,
            kernel_initializer=bc.create_initializer(
                config.initializer_range))(first_token_tensor)
    return pooled_output
Пример #6
0
    def __init__(self, bert_config):

        initializer = bc.create_initializer(bert_config.initializer_range)
        self.layer1 = bc.dense(bert_config.hidden_size, initializer,
                               bc.get_activation(bert_config.hidden_act))

        self.logit_dense1 = bc.dense(2, initializer)
        self.logit_dense2 = bc.dense(2, initializer)

        self.graph_built = False
    def get_lexical_lookup(self):
        input_tensor_var = tf.compat.v1.get_variable(
            name="base_second",
            shape=[self.config.hidden_size],
            initializer=bc.create_initializer(self.config.initializer_range))

        batch_size, seq_length = bc.get_shape_list(self.input_ids)

        input_tensor = tf.reshape(input_tensor_var, [1, 1, -1])
        return input_tensor
Пример #8
0
    def mlp_max(seq_output):
        # first_tokens : [batch_size, num_window, hidden_size]
        first_tokens = seq_output[:, :, 0, :]
        dense_layer1 = tf.keras.layers.Dense(
            config.hidden_size * 4,
            activation=tf.keras.activations.tanh,
            kernel_initializer=create_initializer(config.initializer_range))
        dense_layer2 = tf.keras.layers.Dense(
            config.hidden_size,
            activation=tf.keras.activations.tanh,
            kernel_initializer=create_initializer(config.initializer_range))

        first_tokens = window_wise_dropout(first_tokens)

        # hidden1 : [batch_size, num_window, hidden_size]
        hidden1 = dense_layer1(first_tokens)
        # hidden1 : [batch_size, num_window, hidden_size
        hidden2 = dense_layer2(hidden1)
        return tf.reduce_max(hidden2, axis=1)
Пример #9
0
    def __init__(self,
                 config,
                 is_training,
                 input_ids,
                 input_mask=None,
                 token_type_ids=None,
                 use_one_hot_embeddings=True,
                 features=None,
                 scope=None):
        super(DualBertTwoInputWithDoubleInputLength, self).__init__()

        input_ids1 = features["input_ids1"]
        input_mask1 = features["input_mask1"]
        segment_ids1 = features["segment_ids1"]
        input_ids2 = features["input_ids2"]
        input_mask2 = features["input_mask2"]
        segment_ids2 = features["segment_ids2"]

        with tf.compat.v1.variable_scope(dual_model_prefix1):
            model_1 = BertModel(
                config=config,
                is_training=is_training,
                input_ids=input_ids,
                input_mask=input_mask,
                token_type_ids=token_type_ids,
                use_one_hot_embeddings=use_one_hot_embeddings,
            )

        with tf.compat.v1.variable_scope(dual_model_prefix2):
            model_2 = DoubleLengthInputModel(
                config,
                is_training,
                input_ids1,
                input_mask1,
                segment_ids1,
                input_ids2,
                input_mask2,
                segment_ids2,
                use_one_hot_embeddings=use_one_hot_embeddings,
            )

        model_1_first_token = model_1.get_sequence_output()[:, 0, :]
        model_2_first_token = model_2.get_sequence_output()[:, 0, :]

        rep = tf.concat([model_1_first_token, model_2_first_token], axis=1)

        self.sequence_output = model_1.get_sequence_output()
        dense_layer = tf.keras.layers.Dense(
            config.hidden_size,
            activation=tf.keras.activations.tanh,
            kernel_initializer=create_initializer(config.initializer_range))
        pooled_output = dense_layer(rep)
        self.pooled_output = pooled_output
Пример #10
0
def get_masked_lm_output_albert(model_config, input_tensor, output_weights,
                                positions, label_ids, label_weights):
    """Get loss and log probs for the masked LM."""
    input_tensor = bert_common.gather_indexes(input_tensor, positions)

    with tf.compat.v1.variable_scope("cls/predictions"):
        # We apply one more non-linear transformation before the output layer.
        # This matrix is not used after pre-training.
        with tf.compat.v1.variable_scope("transform"):
            input_tensor = tf.keras.layers.Dense(
                model_config.embedding_size,
                activation=bert_common.get_activation(model_config.hidden_act),
                kernel_initializer=bert_common.create_initializer(
                    model_config.initializer_range))(input_tensor)
            input_tensor = bert_common.layer_norm(input_tensor)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        output_bias = tf.compat.v1.get_variable(
            "output_bias",
            shape=[model_config.vocab_size],
            initializer=tf.compat.v1.zeros_initializer())
        print("output_weights", output_weights.shape)
        logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        log_probs = tf.nn.log_softmax(logits, axis=-1)

        label_ids = tf.reshape(label_ids, [-1])
        label_weights = tf.reshape(label_weights, [-1])

        one_hot_labels = tf.one_hot(label_ids,
                                    depth=model_config.vocab_size,
                                    dtype=tf.float32)

        # The `positions` tensor might be zero-padded (if the sequence is too
        # short to have the maximum number of predictions). The `label_weights`
        # tensor has a value of 1.0 for every real prediction and 0.0 for the
        # padding predictions.
        per_example_loss = -tf.reduce_sum(
            input_tensor=log_probs * one_hot_labels, axis=[-1])
        numerator = tf.reduce_sum(input_tensor=label_weights *
                                  per_example_loss)
        denominator = tf.reduce_sum(input_tensor=label_weights) + 1e-5
        loss = numerator / denominator

    return (loss, per_example_loss, log_probs)
Пример #11
0
    def get_regression_and_loss(hidden_vector, loss_label):
        logits = bc.dense(2,
                          bc.create_initializer(
                              bert_config.initializer_range))(hidden_vector)
        gold_prob = loss_to_prob_pair(loss_label)
        logits = tf.reshape(logits, gold_prob.shape)

        per_example_loss = tf.nn.softmax_cross_entropy_with_logits(gold_prob,
                                                                   logits,
                                                                   axis=-1,
                                                                   name=None)
        per_example_loss = tf.cast(masked_lm_weights,
                                   tf.float32) * per_example_loss
        losses = tf.reduce_sum(per_example_loss, axis=1)
        loss = tf.reduce_mean(losses)

        return loss, per_example_loss, logits
Пример #12
0
    def __init__(self, config):
        super(ForwardColumn, self).__init__()
        hidden_size = config.hidden_size
        initializer = bc.create_initializer(config.initializer_range)

        attention_head_size = int(hidden_size / config.num_attention_heads)
        self.attention_head_size = attention_head_size
        num_attention_heads = config.num_attention_heads
        self.num_attention_heads = num_attention_heads
        self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
        self.hidden_dropout_prob = config.hidden_dropout_prob

        self.attention_unit = AttentionUnit(
            num_attention_heads, attention_head_size, hidden_size,
            config.hidden_dropout_prob, config.attention_probs_dropout_prob,
            initializer)
        self.residual_ff = ResidualFeedforward(hidden_size,
                                               config.intermediate_size,
                                               config.hidden_act,
                                               config.hidden_dropout_prob,
                                               initializer)
        self.attention_mask = None
Пример #13
0
    def apply(self, input_ids, segment_ids, initializer_range, vocab_size,
              hidden_size, type_vocab_size, max_position_embeddings,
              hidden_dropout_prob, use_one_hot_embeddings):
        initializer = bc.create_initializer(initializer_range)
        self.embedding_table = tf.compat.v1.get_variable(
            name="word_embeddings",
            shape=[vocab_size, hidden_size],
            initializer=initializer)
        self.token_type_table = tf.compat.v1.get_variable(
            name="token_type_embeddings",
            shape=[type_vocab_size, hidden_size],
            initializer=initializer)
        self.full_position_embeddings = tf.compat.v1.get_variable(
            name="position_embeddings",
            shape=[max_position_embeddings, hidden_size],
            initializer=initializer)

        # Perform embedding lookup on the word ids.
        (self.embedding_output, self.embedding_table) = bc.embedding_lookup2(
            input_ids=input_ids,
            embedding_table=self.embedding_table,
            vocab_size=vocab_size,
            embedding_size=hidden_size,
            use_one_hot_embeddings=use_one_hot_embeddings)

        # Add positional embeddings and token type embeddings, then layer
        # normalize and perform dropout.
        self.embedding_output = bc.embedding_postprocessor2(
            input_tensor=self.embedding_output,
            token_type_table=self.token_type_table,
            full_position_embeddings=self.full_position_embeddings,
            use_token_type=True,
            token_type_ids=segment_ids,
            token_type_vocab_size=type_vocab_size,
            use_position_embeddings=True,
            max_position_embeddings=max_position_embeddings,
            dropout_prob=hidden_dropout_prob)
        return self.embedding_output
Пример #14
0
    def __init__(self, config, is_training, use_one_hot_embeddings):
        super(HorizontalAlpha, self).__init__()
        if not is_training:
            config.set_attrib("hidden_dropout_prob", 0.0)
            config.set_attrib("attention_probs_dropout_prob", 0.0)

        initializer = bc.create_initializer(config.initializer_range)
        self.embedding_layer = Embedding2()
        self.embedding_projector = bc.dense(config.hidden_size, initializer)
        self.config = config
        num_columns = config.num_columns
        self.column_list = []
        for tower_idx in range(num_columns):
            column = ForwardColumn(config)
            self.column_list.append(column)

        self.num_layers = config.num_hidden_layers
        self.num_columns = config.num_columns
        self.num_column_tokens = config.num_column_tokens
        self.column_embedding_list = []
        self.use_one_hot_embeddings = use_one_hot_embeddings
        self.config = config
        column_mask = []
        for column_idx in range(1, self.num_columns):
            column_embedding = tf.Variable(
                lambda: initializer(shape=(self.num_column_tokens, config.
                                           hidden_size),
                                    dtype=tf.float32),
                name="column_embedding_{}".format(column_idx))
            self.column_embedding_list.append(column_embedding)
            column_mask += [1] * self.num_column_tokens

        self.column_mask = tf.constant(column_mask)
        self.all_raw_layers = []
        self.all_main_layers = []
        self.sequence_output = None
        self.pooled_output = None
Пример #15
0
def get_loss_independently(bert_config, input_tensor, masked_lm_positions,
                           masked_lm_weights, loss_base, loss_target):
    input_tensor = bc.gather_indexes(input_tensor, masked_lm_positions)

    hidden = bc.dense(bert_config.hidden_size,
                      bc.create_initializer(bert_config.initializer_range),
                      bc.get_activation(bert_config.hidden_act))(input_tensor)

    def get_regression_and_loss(hidden_vector, loss_label):
        logits = bc.dense(2,
                          bc.create_initializer(
                              bert_config.initializer_range))(hidden_vector)
        gold_prob = loss_to_prob_pair(loss_label)
        logits = tf.reshape(logits, gold_prob.shape)

        per_example_loss = tf.nn.softmax_cross_entropy_with_logits(gold_prob,
                                                                   logits,
                                                                   axis=-1,
                                                                   name=None)
        per_example_loss = tf.cast(masked_lm_weights,
                                   tf.float32) * per_example_loss
        losses = tf.reduce_sum(per_example_loss, axis=1)
        loss = tf.reduce_mean(losses)

        return loss, per_example_loss, logits

    loss1, per_example_loss1, logits1 = get_regression_and_loss(
        hidden, loss_base)
    loss2, per_example_loss2, logits2 = get_regression_and_loss(
        hidden, loss_target)

    prob1 = tf.nn.softmax(logits1)[:, :, 0]
    prob2 = tf.nn.softmax(logits2)[:, :, 0]

    total_loss = loss1 + loss2
    return total_loss, loss1, loss2, per_example_loss1, per_example_loss2, prob1, prob2
Пример #16
0
def transformer_model(input_tensor,
                    attention_mask=None,
                    input_mask=None,
                    hidden_size=768,
                    num_hidden_layers=12,
                    num_attention_heads=12,
                    mr_num_route=10,
                    intermediate_size=3072,
                    intermediate_act_fn=gelu,
                    hidden_dropout_prob=0.1,
                    attention_probs_dropout_prob=0.1,
                    initializer_range=0.02,
                    is_training=True,
                    do_return_all_layers=False):
    """Multi-headed, multi-layer Transformer from "Attention is All You Need".

    This is almost an exact implementation of the original Transformer encoder.

    See the original paper:
    https://arxiv.org/abs/1706.03762

    Also see:
    https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

    Args:
        input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
        attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
            seq_length], with 1 for positions that can be attended to and 0 in
            positions that should not be.
        hidden_size: int. Hidden size of the Transformer.
        num_hidden_layers: int. Number of layers (blocks) in the Transformer.
        num_attention_heads: int. Number of attention heads in the Transformer.
        intermediate_size: int. The size of the "intermediate" (a.k.a., feed
            forward) layer.
        intermediate_act_fn: function. The non-linear activation function to apply
            to the output of the intermediate/feed-forward layer.
        hidden_dropout_prob: float. Dropout probability for the hidden layers.
        attention_probs_dropout_prob: float. Dropout probability of the attention
            probabilities.
        initializer_range: float. Range of the initializer (stddev of truncated
            normal).
        do_return_all_layers: Whether to also return all layers or just the final
            layer.

    Returns:
        float Tensor of shape [batch_size, seq_length, hidden_size], the final
        hidden layer of the Transformer.

    Raises:
        ValueError: A Tensor shape or parameter is invalid.
    """
    if hidden_size % num_attention_heads != 0:
        raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    initializer = create_initializer(initializer_range)

    ext_tensor = tf.compat.v1.get_variable("ext_tensor",
                                 shape=[num_hidden_layers, mr_num_route, EXT_SIZE ,hidden_size],
                                 initializer=initializer,
                                 )
    ext_tensor_inter = tf.compat.v1.get_variable("ext_tensor_inter",
                                       shape=[num_hidden_layers, mr_num_route, intermediate_size],
                                       initializer=initializer,
                                           )
    # The Transformer performs sum residuals on all layers so the input needs
    # to be the same as the hidden size.
    if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                                         (input_width, hidden_size))

    # We keep the representation as a 2D tensor to avoid re-shaping it back and
    # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
    # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
    # help the optimizer.
    prev_output = reshape_to_matrix(input_tensor)

    def is_mr_layer(layer_idx):
        if layer_idx > 1:
            return True
        else:
            return False

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
        if not is_mr_layer(layer_idx):
            with tf.compat.v1.variable_scope("layer_%d" % layer_idx):
                layer_input = prev_output

                with tf.compat.v1.variable_scope("attention"):
                    attention_heads = []
                    with tf.compat.v1.variable_scope("self"):
                        attention_head = attention_layer(
                                from_tensor=layer_input,
                                to_tensor=layer_input,
                                attention_mask=attention_mask,
                                num_attention_heads=num_attention_heads,
                                size_per_head=attention_head_size,
                                attention_probs_dropout_prob=attention_probs_dropout_prob,
                                initializer_range=initializer_range,
                                do_return_2d_tensor=True,
                                batch_size=batch_size,
                                from_seq_length=seq_length,
                                to_seq_length=seq_length)
                        attention_heads.append(attention_head)

                    attention_output = None
                    if len(attention_heads) == 1:
                        attention_output = attention_heads[0]
                    else:
                        # In the case where we have other sequences, we just concatenate
                        # them to the self-attention head before the projection.
                        attention_output = tf.concat(attention_heads, axis=-1)

                    # Run a linear projection of `hidden_size` then add a residual
                    # with `layer_input`.
                    with tf.compat.v1.variable_scope("output"):
                        attention_output = dense(hidden_size, initializer)(attention_output)
                        attention_output = dropout(attention_output, hidden_dropout_prob)
                        attention_output = layer_norm(attention_output + layer_input)

                # The activation is only applied to the "intermediate" hidden layer.
                with tf.compat.v1.variable_scope("intermediate"):
                    intermediate_output = dense(intermediate_size, initializer,
                                                activation=intermediate_act_fn)(attention_output)

                # Down-project back to `hidden_size` then add the residual.
                with tf.compat.v1.variable_scope("output"):
                    layer_output = dense(hidden_size, initializer)(intermediate_output)
                    layer_output = dropout(layer_output, hidden_dropout_prob)
                    layer_output = layer_norm(layer_output + attention_output)
                    prev_output = layer_output
                    all_layer_outputs.append(layer_output)

                with tf.compat.v1.variable_scope("mr_key"):
                    key_output = tf.keras.layers.Dense(
                        mr_num_route,
                        kernel_initializer=create_initializer(initializer_range))(intermediate_output)
                    key_output = dropout(key_output, hidden_dropout_prob)

                    if is_training:
                        key = tf.random.categorical(key_output, 1) # [batch_size, 1]
                        key = tf.reshape(key, [-1])
                    else:
                        key = tf.math.argmax(input=key_output, axis=1)

        else: # Case MR layer
            with tf.compat.v1.variable_scope("layer_%d" % layer_idx):
                layer_input = prev_output
                ext_slice = tf.gather(ext_tensor[layer_idx], key)
                ext_interm_slice = tf.gather(ext_tensor_inter[layer_idx], key)
                print("ext_slice (batch*seq, ", ext_slice.shape)
                with tf.compat.v1.variable_scope("attention"):
                    attention_heads = []
                    with tf.compat.v1.variable_scope("self"):
                        attention_head = attention_layer_w_ext(
                            from_tensor=layer_input,
                            to_tensor=layer_input,
                            attention_mask=attention_mask,
                            ext_slice=ext_slice,
                            num_attention_heads=num_attention_heads,
                            size_per_head=attention_head_size,
                            attention_probs_dropout_prob=attention_probs_dropout_prob,
                            initializer_range=initializer_range,
                            do_return_2d_tensor=True,
                            batch_size=batch_size,
                            from_seq_length=seq_length,
                            to_seq_length=seq_length)
                        attention_head = attention_head + ext_slice[:,EXT_ATT_OUT,:]
                        attention_heads.append(attention_head)

                    attention_output = None
                    if len(attention_heads) == 1:
                        attention_output = attention_heads[0]
                    else:
                        # In the case where we have other sequences, we just concatenate
                        # them to the self-attention head before the projection.
                        attention_output = tf.concat(attention_heads, axis=-1)

                    # Run a linear projection of `hidden_size` then add a residual
                    # with `layer_input`.
                    with tf.compat.v1.variable_scope("output"):
                        attention_output = dense(hidden_size, initializer)(attention_output)
                        attention_output = dropout(attention_output, hidden_dropout_prob)
                        attention_output = attention_output + ext_slice[:,EXT_ATT_PROJ,:]
                        attention_output = layer_norm(attention_output + layer_input)

                # The activation is only applied to the "intermediate" hidden layer.
                with tf.compat.v1.variable_scope("intermediate"):
                    intermediate_output = dense(intermediate_size, initializer,
                                                activation=intermediate_act_fn)(attention_output)
                    intermediate_output = ext_interm_slice + intermediate_output
                # Down-project back to `hidden_size` then add the residual.
                with tf.compat.v1.variable_scope("output"):
                    layer_output = dense(hidden_size, initializer)(intermediate_output)
                    layer_output = layer_output + ext_slice[:, EXT_LAYER_OUT,:]
                    layer_output = dropout(layer_output, hidden_dropout_prob)
                    layer_output = layer_norm(layer_output + attention_output)
                    prev_output = layer_output
                    all_layer_outputs.append(layer_output)

    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)
        return final_outputs, key
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output, key
    def embedding_postprocessor(
            self,
            d_input_ids,
            input_tensor,
            use_token_type=False,
            token_type_ids=None,
            token_type_vocab_size=16,
            token_type_embedding_name="token_type_embeddings",
            use_position_embeddings=True,
            position_embedding_name="position_embeddings",
            initializer_range=0.02,
            max_position_embeddings=512,
            dropout_prob=0.1):
        input_shape = bc.get_shape_list(d_input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]
        width = self.config.hidden_size

        output = input_tensor

        if use_token_type:
            if token_type_ids is None:
                raise ValueError("`token_type_ids` must be specified if"
                                 "`use_token_type` is True.")
            token_type_table = tf.compat.v1.get_variable(
                name=token_type_embedding_name,
                shape=[token_type_vocab_size, width],
                initializer=bc.create_initializer(initializer_range))
            # This vocab will be small so we always do one-hot here, since it is always
            # faster for a small vocabulary.
            flat_token_type_ids = tf.reshape(token_type_ids, [-1])
            one_hot_ids = tf.one_hot(flat_token_type_ids,
                                     depth=token_type_vocab_size)
            token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
            token_type_embeddings = tf.reshape(token_type_embeddings,
                                               [batch_size, seq_length, width])
            output += token_type_embeddings

        if use_position_embeddings:
            assert_op = tf.compat.v1.assert_less_equal(
                seq_length, max_position_embeddings)
            with tf.control_dependencies([assert_op]):
                full_position_embeddings = tf.compat.v1.get_variable(
                    name=position_embedding_name,
                    shape=[max_position_embeddings, width],
                    initializer=bc.create_initializer(initializer_range))
                # Since the position embedding table is a learned variable, we create it
                # using a (long) sequence length `max_position_embeddings`. The actual
                # sequence length might be shorter than this, for faster training of
                # tasks that do not have long sequences.
                #
                # So `full_position_embeddings` is effectively an embedding table
                # for position [0, 1, 2, ..., max_position_embeddings-1], and the current
                # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
                # perform a slice.
                position_embeddings = tf.slice(full_position_embeddings,
                                               [0, 0], [seq_length, -1])
                num_dims = len(output.shape.as_list())

                # Only the last two dimensions are relevant (`seq_length` and `width`), so
                # we broadcast among the first dimensions, which is typically just
                # the batch size.
                position_broadcast_shape = []
                for _ in range(num_dims - 2):
                    position_broadcast_shape.append(1)
                position_broadcast_shape.extend([seq_length, width])
                position_embeddings = tf.reshape(position_embeddings,
                                                 position_broadcast_shape)
                output += position_embeddings

        output = bc.layer_norm_and_dropout(output, dropout_prob)
        return output
Пример #18
0
def attention_layer_w_ext(from_tensor,
                                        to_tensor,
                                        attention_mask=None,
                                        num_attention_heads=1,
                                        size_per_head=512,
                                        ext_slice=None, # [Num_tokens, n_items, hidden_dim]
                                        query_act=None,
                                        key_act=None,
                                        value_act=None,
                                        attention_probs_dropout_prob=0.0,
                                        initializer_range=0.02,
                                        do_return_2d_tensor=False,
                                        batch_size=None,
                                        from_seq_length=None,
                                        to_seq_length=None):
    """Performs multi-headed attention from `from_tensor` to `to_tensor`.

    This is an implementation of multi-headed attention based on "Attention
    is all you Need". If `from_tensor` and `to_tensor` are the same, then
    this is self-attention. Each timestep in `from_tensor` attends to the
    corresponding sequence in `to_tensor`, and returns a fixed-with vector.

    This function first projects `from_tensor` into a "query" tensor and
    `to_tensor` into "key" and "value" tensors. These are (effectively) a list
    of tensors of length `num_attention_heads`, where each tensor is of shape
    [batch_size, seq_length, size_per_head].

    Then, the query and key tensors are dot-producted and scaled. These are
    softmaxed to obtain attention probabilities. The value tensors are then
    interpolated by these probabilities, then concatenated back to a single
    tensor and returned.

    In practice, the multi-headed attention are done with transposes and
    reshapes rather than actual separate tensors.

    Args:
        from_tensor: float Tensor of shape [batch_size, from_seq_length,
            from_width].
        to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
        attention_mask: (optional) int32 Tensor of shape [batch_size,
            from_seq_length, to_seq_length]. The values should be 1 or 0. The
            attention scores will effectively be set to -infinity for any positions in
            the mask that are 0, and will be unchanged for positions that are 1.
        num_attention_heads: int. Number of attention heads.
        size_per_head: int. Size of each attention head.
        query_act: (optional) Activation function for the query transform.
        key_act: (optional) Activation function for the key transform.
        value_act: (optional) Activation function for the value transform.
        attention_probs_dropout_prob: (optional) float. Dropout probability of the
            attention probabilities.
        initializer_range: float. Range of the weight initializer.
        do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
            * from_seq_length, num_attention_heads * size_per_head]. If False, the
            output will be of shape [batch_size, from_seq_length, num_attention_heads
            * size_per_head].
        batch_size: (Optional) int. If the input is 2D, this might be the batch size
            of the 3D version of the `from_tensor` and `to_tensor`.
        from_seq_length: (Optional) If the input is 2D, this might be the seq length
            of the 3D version of the `from_tensor`.
        to_seq_length: (Optional) If the input is 2D, this might be the seq length
            of the 3D version of the `to_tensor`.

    Returns:
        float Tensor of shape [batch_size, from_seq_length,
            num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
            true, this will be of shape [batch_size * from_seq_length,
            num_attention_heads * size_per_head]).

    Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
    """

    def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
                                                     seq_length, width):
        output_tensor = tf.reshape(
                input_tensor, [batch_size, seq_length, num_attention_heads, width])

        output_tensor = tf.transpose(a=output_tensor, perm=[0, 2, 1, 3])
        return output_tensor

    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])

    if len(from_shape) != len(to_shape):
        raise ValueError(
                "The rank of `from_tensor` must match the rank of `to_tensor`.")

    if len(from_shape) == 3:
        batch_size = from_shape[0]
        from_seq_length = from_shape[1]
        to_seq_length = to_shape[1]
    elif len(from_shape) == 2:
        if (batch_size is None or from_seq_length is None or to_seq_length is None):
            raise ValueError(
                    "When passing in rank 2 tensors to attention_layer, the values "
                    "for `batch_size`, `from_seq_length`, and `to_seq_length` "
                    "must all be specified.")

    # Scalar dimensions referenced here:
    #     B = batch size (number of sequences)
    #     F = `from_tensor` sequence length
    #     T = `to_tensor` sequence length
    #     N = `num_attention_heads`
    #     H = `size_per_head`

    from_tensor_2d = reshape_to_matrix(from_tensor)
    to_tensor_2d = reshape_to_matrix(to_tensor)

    def get_ext_slice(idx):
        return ext_slice[:, idx, :]

    print("from_tensor_2d ", from_tensor_2d.shape)

    query_in = from_tensor_2d + get_ext_slice(EXT_QUERY_IN)
    query_in = from_tensor_2d

    # `query_layer` = [B*F, N*H]
    query_layer = tf.keras.layers.Dense(
            num_attention_heads * size_per_head,
            activation=query_act,
            name="query",
            kernel_initializer=create_initializer(initializer_range))(query_in)

    query_layer = query_layer + get_ext_slice(EXT_QUERY_OUT)

    key_in = to_tensor_2d
    key_in = to_tensor_2d + get_ext_slice(EXT_KEY_IN)
    # `key_layer` = [B*T, N*H]
    key_layer = tf.keras.layers.Dense(
            num_attention_heads * size_per_head,
            activation=key_act,
            name="key",
            kernel_initializer=create_initializer(initializer_range))(key_in)

    key_layer = key_layer + get_ext_slice(EXT_KEY_OUT)

    value_in = to_tensor_2d
    value_in = to_tensor_2d + get_ext_slice(EXT_VALUE_IN)
    # `value_layer` = [B*T, N*H]
    value_layer = tf.keras.layers.Dense(
            num_attention_heads * size_per_head,
            activation=value_act,
            name="value",
            kernel_initializer=create_initializer(initializer_range))(value_in)

    value_layer = value_layer + get_ext_slice(EXT_VALUE_OUT)

    # `query_layer` = [B, N, F, H]
    query_layer = transpose_for_scores(query_layer, batch_size,
                                                     num_attention_heads, from_seq_length,
                                                     size_per_head)

    # `key_layer` = [B, N, T, H]
    key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
                                                                     to_seq_length, size_per_head)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    # `attention_scores` = [B, N, F, T]
    attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
    attention_scores = tf.multiply(attention_scores,
                                                                 1.0 / math.sqrt(float(size_per_head)))

    if attention_mask is not None:
        # `attention_mask` = [B, 1, F, T]
        attention_mask = tf.expand_dims(attention_mask, axis=[1])

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0

        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        attention_scores += adder


    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

    # `value_layer` = [B, T, N, H]
    value_layer = tf.reshape(
            value_layer,
            [batch_size, to_seq_length, num_attention_heads, size_per_head])

    # `value_layer` = [B, N, T, H]
    value_layer = tf.transpose(a=value_layer, perm=[0, 2, 1, 3])

    # `context_layer` = [B, N, F, H]
    context_layer = tf.matmul(attention_probs, value_layer)

    # `context_layer` = [B, F, N, H]
    context_layer = tf.transpose(a=context_layer, perm=[0, 2, 1, 3])

    if do_return_2d_tensor:
        # `context_layer` = [B*F, N*V]
        context_layer = tf.reshape(
                context_layer,
                [batch_size * from_seq_length, num_attention_heads * size_per_head])
    else:
        # `context_layer` = [B, F, N*V]
        context_layer = tf.reshape(
                context_layer,
                [batch_size, from_seq_length, num_attention_heads * size_per_head])

    return context_layer
Пример #19
0
def transformer_model(input_tensor,
                      attention_mask=None,
                      input_mask=None,
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      is_training=True,
                      do_return_all_layers=False):
    if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    initializer = create_initializer(initializer_range)

    # The Transformer performs sum residuals on all layers so the input needs
    # to be the same as the hidden size.
    if input_width != hidden_size:
        raise ValueError(
            "The width of the input tensor (%d) != hidden size (%d)" %
            (input_width, hidden_size))

    # We keep the representation as a 2D tensor to avoid re-shaping it back and
    # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
    # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
    # help the optimizer.
    prev_output = reshape_to_matrix(input_tensor)
    #prev_output = input_tensor

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
        with tf.compat.v1.variable_scope("layer_%d" % layer_idx):
            layer_input = prev_output

            with tf.compat.v1.variable_scope("attention"):
                attention_heads = []
                with tf.compat.v1.variable_scope("self"):
                    attention_head = attention_layer(
                        from_tensor=layer_input,
                        to_tensor=layer_input,
                        attention_mask=attention_mask,
                        num_attention_heads=num_attention_heads,
                        size_per_head=attention_head_size,
                        attention_probs_dropout_prob=
                        attention_probs_dropout_prob,
                        initializer_range=initializer_range,
                        do_return_2d_tensor=True,
                        batch_size=batch_size,
                        from_seq_length=seq_length,
                        to_seq_length=seq_length)
                    attention_heads.append(attention_head)

                attention_output = None
                if len(attention_heads) == 1:
                    attention_output = attention_heads[0]
                else:
                    # In the case where we have other sequences, we just concatenate
                    # them to the self-attention head before the projection.
                    attention_output = tf.concat(attention_heads, axis=-1)

                # Run a linear projection of `hidden_size` then add a residual
                # with `layer_input`.
                with tf.compat.v1.variable_scope("output"):
                    attention_output = dense(hidden_size,
                                             initializer)(attention_output)
                    attention_output = dropout(attention_output,
                                               hidden_dropout_prob)
                    attention_output = layer_norm(attention_output +
                                                  layer_input)

            # The activation is only applied to the "intermediate" hidden layer.
            with tf.compat.v1.variable_scope("intermediate"):
                intermediate_output = dense(
                    intermediate_size,
                    initializer,
                    activation=intermediate_act_fn)(attention_output)

            # Down-project back to `hidden_size` then add the residual.
            with tf.compat.v1.variable_scope("output"):
                layer_output = dense(hidden_size,
                                     initializer)(intermediate_output)
                layer_output = dropout(layer_output, hidden_dropout_prob)
                layer_output = layer_norm(layer_output + attention_output)
                prev_output = layer_output
                all_layer_outputs.append(layer_output)
    #
    # return all_layer_outputs

    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)
        return final_outputs
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output
Пример #20
0
    def __init__(self,
                 config,
                 is_training,
                 input_ids,
                 input_mask=None,
                 token_type_ids=None,
                 use_one_hot_embeddings=True,
                 scope=None):
        super(ReshapeBertModel, self).__init__()
        config = copy.deepcopy(config)
        self.config = config
        if not is_training:
            config.hidden_dropout_prob = 0.0
            config.attention_probs_dropout_prob = 0.0

        input_shape = get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length],
                                 dtype=tf.int32)

        if token_type_ids is None:
            token_type_ids = tf.zeros(shape=[batch_size, seq_length],
                                      dtype=tf.int32)

        with tf.compat.v1.variable_scope(scope, default_name="bert"):
            with tf.compat.v1.variable_scope("embeddings"):
                # Perform embedding lookup on the word ids.
                (self.embedding_output,
                 self.embedding_table) = embedding_lookup(
                     input_ids=input_ids,
                     vocab_size=config.vocab_size,
                     embedding_size=config.hidden_size,
                     initializer_range=config.initializer_range,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=use_one_hot_embeddings)

                # Add positional embeddings and token type embeddings, then layer
                # normalize and perform dropout.
                self.embedding_output = embedding_postprocessor(
                    input_tensor=self.embedding_output,
                    use_token_type=True,
                    token_type_ids=token_type_ids,
                    token_type_vocab_size=config.type_vocab_size,
                    token_type_embedding_name="token_type_embeddings",
                    use_position_embeddings=True,
                    position_embedding_name="position_embeddings",
                    initializer_range=config.initializer_range,
                    max_position_embeddings=config.max_position_embeddings,
                    dropout_prob=config.hidden_dropout_prob)

            with tf.compat.v1.variable_scope("encoder"):
                attention_mask = create_attention_mask_from_input_mask(
                    input_ids, input_mask)

                self.all_encoder_layers = transformer_model(
                    input_tensor=self.embedding_output,
                    attention_mask=attention_mask,
                    input_mask=input_mask,
                    hidden_size=config.hidden_size,
                    num_hidden_layers=config.num_hidden_layers,
                    num_attention_heads=config.num_attention_heads,
                    is_training=is_training,
                    intermediate_size=config.intermediate_size,
                    intermediate_act_fn=get_activation(config.hidden_act),
                    hidden_dropout_prob=config.hidden_dropout_prob,
                    attention_probs_dropout_prob=config.
                    attention_probs_dropout_prob,
                    initializer_range=config.initializer_range,
                    do_return_all_layers=True)

            self.sequence_output = self.all_encoder_layers[-1]
            with tf.compat.v1.variable_scope("pooler"):
                first_token_tensor = tf.squeeze(self.sequence_output[:,
                                                                     0:1, :],
                                                axis=1)
                self.pooled_output = tf.keras.layers.Dense(
                    config.hidden_size,
                    activation=tf.keras.activations.tanh,
                    kernel_initializer=create_initializer(
                        config.initializer_range))(first_token_tensor)
Пример #21
0
    def __init__(self,
                 config,
                 is_training,
                 input_ids1,
                 input_mask1,
                 token_type_ids1,
                 input_ids2,
                 input_mask2,
                 token_type_ids2,
                 use_one_hot_embeddings=True,
                 features=None,
                 scope=None):
        super(DoubleLengthInputModel, self).__init__()
        input_shape = get_shape_list(input_ids1, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        # feed input separtely to the network
        config = copy.deepcopy(config)
        self.config = config
        if not is_training:
            config.hidden_dropout_prob = 0.0
            config.attention_probs_dropout_prob = 0.0

        batch_concat_input_ids = tf.concat([input_ids1, input_ids2],
                                           0)  # [ batch_size * 2,  seq_length]
        batch_concat_concat_token_ids = tf.concat(
            [token_type_ids1, token_type_ids2], 0)
        input_mask_seq_concat = tf.concat([input_mask1, input_mask2], 1)

        with tf.compat.v1.variable_scope(scope, default_name="bert"):
            with tf.compat.v1.variable_scope("embeddings"):
                # Perform embedding lookup on the word ids.
                (embedding_output_batch_concat,
                 self.embedding_table) = embedding_lookup(
                     input_ids=batch_concat_input_ids,
                     vocab_size=config.vocab_size,
                     embedding_size=config.hidden_size,
                     initializer_range=config.initializer_range,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=use_one_hot_embeddings)

                # Add positional embeddings and token type embeddings, then layer
                # normalize and perform dropout.
                embedding_output_batch_concat = embedding_postprocessor(
                    input_tensor=embedding_output_batch_concat,
                    use_token_type=True,
                    token_type_ids=batch_concat_concat_token_ids,
                    token_type_vocab_size=config.type_vocab_size,
                    token_type_embedding_name="token_type_embeddings",
                    use_position_embeddings=True,
                    position_embedding_name="position_embeddings",
                    initializer_range=config.initializer_range,
                    max_position_embeddings=config.max_position_embeddings,
                    dropout_prob=config.hidden_dropout_prob)

            embedding_output_stacked = tf.reshape(
                embedding_output_batch_concat, [2, batch_size, seq_length, -1])
            embedding_output_stacked = tf.transpose(embedding_output_stacked,
                                                    [1, 0, 2, 3])
            embedding_output_seq_concat = tf.reshape(
                embedding_output_stacked, [batch_size, seq_length * 2, -1])
            self.embedding_output = embedding_output_seq_concat

            with tf.compat.v1.variable_scope("encoder"):
                attention_mask = create_attention_mask_from_input_mask(
                    input_mask_seq_concat, input_mask_seq_concat)

                self.all_encoder_layers = transformer_model(
                    input_tensor=self.embedding_output,
                    attention_mask=attention_mask,
                    input_mask=input_mask_seq_concat,
                    hidden_size=config.hidden_size,
                    num_hidden_layers=config.num_hidden_layers,
                    num_attention_heads=config.num_attention_heads,
                    is_training=is_training,
                    intermediate_size=config.intermediate_size,
                    intermediate_act_fn=get_activation(config.hidden_act),
                    hidden_dropout_prob=config.hidden_dropout_prob,
                    attention_probs_dropout_prob=config.
                    attention_probs_dropout_prob,
                    initializer_range=config.initializer_range,
                    do_return_all_layers=True)

            self.sequence_output = self.all_encoder_layers[-1]
            with tf.compat.v1.variable_scope("pooler"):
                first_token_tensor = tf.squeeze(self.sequence_output[:,
                                                                     0:1, :],
                                                axis=1)
                self.pooled_output = tf.keras.layers.Dense(
                    config.hidden_size,
                    activation=tf.keras.activations.tanh,
                    kernel_initializer=create_initializer(
                        config.initializer_range))(first_token_tensor)
Пример #22
0
    def __init__(self,
                             config,
                             is_training,
                             input_ids,
                             input_mask=None,
                             token_type_ids=None,
                             use_one_hot_embeddings=True,
                             scope=None):
        """Constructor for BertModel.

        Args:
            config: `BertConfig` instance.
            is_training: bool. rue for training model, false for eval model. Controls
                whether dropout will be applied.
            input_ids: int32 Tensor of shape [batch_size, seq_length].
            input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
            token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
            use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
                embeddings or tf.embedding_lookup() for the word embeddings. On the TPU,
                it is must faster if this is True, on the CPU or GPU, it is faster if
                this is False.
            scope: (optional) variable scope. Defaults to "bert".

        Raises:
            ValueError: The config is invalid or one of the input tensor shapes
                is invalid.
        """
        config = copy.deepcopy(config)
        if not is_training:
            config.hidden_dropout_prob = 0.0
            config.attention_probs_dropout_prob = 0.0

        input_shape = get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)

        if token_type_ids is None:
            token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)

        with tf.compat.v1.variable_scope(scope, default_name="bert"):
            with tf.compat.v1.variable_scope("embeddings"):
                # Perform embedding lookup on the word ids.
                (self.embedding_output, self.embedding_table) = embedding_lookup(
                        input_ids=input_ids,
                        vocab_size=config.vocab_size,
                        embedding_size=config.hidden_size,
                        initializer_range=config.initializer_range,
                        word_embedding_name="word_embeddings",
                        use_one_hot_embeddings=use_one_hot_embeddings)

                # Add positional embeddings and token type embeddings, then layer
                # normalize and perform dropout.
                self.embedding_output = embedding_postprocessor(
                        input_tensor=self.embedding_output,
                        use_token_type=True,
                        token_type_ids=token_type_ids,
                        token_type_vocab_size=config.type_vocab_size,
                        token_type_embedding_name="token_type_embeddings",
                        use_position_embeddings=True,
                        position_embedding_name="position_embeddings",
                        initializer_range=config.initializer_range,
                        max_position_embeddings=config.max_position_embeddings,
                        dropout_prob=config.hidden_dropout_prob)

            with tf.compat.v1.variable_scope("encoder"):
                # This converts a 2D mask of shape [batch_size, seq_length] to a 3D
                # mask of shape [batch_size, seq_length, seq_length] which is used
                # for the attention scores.
                attention_mask = create_attention_mask_from_input_mask(
                        input_ids, input_mask)

                # Run the stacked transformer.
                # `sequence_output` shape = [batch_size, seq_length, hidden_size].
                self.all_encoder_layers, key = transformer_model(
                        input_tensor=self.embedding_output,
                        attention_mask=attention_mask,
                        input_mask=input_mask,
                        hidden_size=config.hidden_size,
                        num_hidden_layers=config.num_hidden_layers,
                        num_attention_heads=config.num_attention_heads,
                        is_training=is_training,
                        #mr_layer=config.mr_layer,
                        mr_num_route=config.mr_num_route,
                        #mr_key_layer=config.mr_key_layer,
                        intermediate_size=config.intermediate_size,
                        intermediate_act_fn=get_activation(config.hidden_act),
                        hidden_dropout_prob=config.hidden_dropout_prob,
                        attention_probs_dropout_prob=config.attention_probs_dropout_prob,
                        initializer_range=config.initializer_range,
                        do_return_all_layers=True)

            self.key = key
            self.sequence_output = self.all_encoder_layers[-1]
            # The "pooler" converts the encoded sequence tensor of shape
            # [batch_size, seq_length, hidden_size] to a tensor of shape
            # [batch_size, hidden_size]. This is necessary for segment-level
            # (or segment-pair-level) classification tasks where we need a fixed
            # dimensional representation of the segment.
            with tf.compat.v1.variable_scope("pooler"):
                # We "pool" the model by simply taking the hidden state corresponding
                # to the first token. We assume that this has been pre-trained
                first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
                self.pooled_output = tf.keras.layers.Dense(config.hidden_size,
                                      activation=tf.keras.activations.tanh,
                                      kernel_initializer=create_initializer(config.initializer_range))(first_token_tensor)
Пример #23
0
def binary_prediction(bert_config, input_tensor):
    logits = bert_common.dense(2, bert_common.create_initializer(bert_config.initializer_range))(input_tensor)
    log_probs = tf.nn.softmax(logits, axis=2)
    return logits, log_probs
Пример #24
0
    def model_fn(features, labels, mode, params):    # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""
        logging.info("*** Features ***")
        for name in sorted(features.keys()):
            logging.info("    name = %s, shape = %s" % (name, features[name].shape))

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]
        d_input_ids = features["d_input_ids"]
        d_input_mask = features["d_input_mask"]
        d_location_ids = features["d_location_ids"]
        next_sentence_labels = features["next_sentence_labels"]

        if dict_run_config.prediction_op == "loss":
            seed = 0
        else:
            seed = None

        if dict_run_config.prediction_op == "loss_fixed_mask" or train_config.fixed_mask:
            masked_input_ids = input_ids
            masked_lm_positions = features["masked_lm_positions"]
            masked_lm_ids = features["masked_lm_ids"]
            masked_lm_weights = tf.ones_like(masked_lm_positions, dtype=tf.float32)
        else:
            masked_input_ids, masked_lm_positions, masked_lm_ids, masked_lm_weights \
                = random_masking(input_ids, input_mask, train_config.max_predictions_per_seq, MASK_ID, seed)

        if dict_run_config.use_d_segment_ids:
            d_segment_ids = features["d_segment_ids"]
        else:
            d_segment_ids = None

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        model = model_class(
                config=bert_config,
                d_config=dbert_config,
                is_training=is_training,
                input_ids=masked_input_ids,
                input_mask=input_mask,
                d_input_ids=d_input_ids,
                d_input_mask=d_input_mask,
                d_location_ids=d_location_ids,
                use_target_pos_emb=dict_run_config.use_target_pos_emb,
                token_type_ids=segment_ids,
                use_one_hot_embeddings=train_config.use_one_hot_embeddings,
                d_segment_ids=d_segment_ids,
                pool_dict_output=dict_run_config.pool_dict_output,
        )

        (masked_lm_loss,
         masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
                 bert_config, model.get_sequence_output(), model.get_embedding_table(),
                 masked_lm_positions, masked_lm_ids, masked_lm_weights)
        (next_sentence_loss, next_sentence_example_loss,
         next_sentence_log_probs) = get_next_sentence_output(
                 bert_config, model.get_pooled_output(), next_sentence_labels)

        total_loss = masked_lm_loss

        if dict_run_config.train_op == "entry_prediction":
            score_label = features["useful_entry"] # [batch, 1]
            score_label = tf.reshape(score_label, [-1])
            entry_logits = bert_common.dense(2, bert_common.create_initializer(bert_config.initializer_range))\
                (model.get_dict_pooled_output())
            print("entry_logits: ", entry_logits.shape)
            losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=entry_logits, labels=score_label)
            loss = tf.reduce_mean(losses)
            total_loss = loss

        if dict_run_config.train_op == "lookup":
            lookup_idx = features["lookup_idx"]
            lookup_loss, lookup_example_loss, lookup_score = \
                sequence_index_prediction(bert_config, lookup_idx, model.get_sequence_output())

            total_loss += lookup_loss

        tvars = tf.compat.v1.trainable_variables()

        init_vars = {}
        scaffold_fn = None
        if train_config.init_checkpoint:
            if dict_run_config.is_bert_checkpoint:
                map1, map2, init_vars = get_bert_assignment_map_for_dict(tvars, train_config.init_checkpoint)

                def load_fn():
                    tf.compat.v1.train.init_from_checkpoint(train_config.init_checkpoint, map1)
                    tf.compat.v1.train.init_from_checkpoint(train_config.init_checkpoint, map2)
            else:
                map1, init_vars = get_assignment_map_as_is(tvars, train_config.init_checkpoint)

                def load_fn():
                    tf.compat.v1.train.init_from_checkpoint(train_config.init_checkpoint, map1)

            if train_config.use_tpu:
                def tpu_scaffold():
                    load_fn()
                    return tf.compat.v1.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                load_fn()

        logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in init_vars:
                init_string = ", *INIT_FROM_CKPT*"
            logging.info("    name = %s, shape = %s%s", var.name, var.shape, init_string)
        logging.info("Total parameters : %d" % get_param_num())

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:
            if train_config.gradient_accumulation == 1:
                train_op = optimization.create_optimizer_from_config(total_loss, train_config)
            else:
                logging.info("Using gradient accumulation : %d" % train_config.gradient_accumulation)
                train_op = get_accumulated_optimizer_from_config(total_loss, train_config,
                                                                 tvars, train_config.gradient_accumulation)
            output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
                    mode=mode,
                    loss=total_loss,
                    train_op=train_op,
                    scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.EVAL:
            eval_metrics = (metric_fn, [
                    masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                    masked_lm_weights, next_sentence_example_loss,
                    next_sentence_log_probs, next_sentence_labels
            ])
            output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
                    mode=mode,
                    loss=total_loss,
                    eval_metrics=eval_metrics,
                    scaffold_fn=scaffold_fn)
        else:
            if dict_run_config.prediction_op == "gradient":
                logging.info("Fetching gradient")
                gradient = get_gradients(model, masked_lm_log_probs,
                                         train_config.max_predictions_per_seq, bert_config.vocab_size)
                predictions = {
                        "masked_input_ids": masked_input_ids,
                        #"input_ids": input_ids,
                        "d_input_ids": d_input_ids,
                        "masked_lm_positions": masked_lm_positions,
                        "gradients": gradient,
                }
            elif dict_run_config.prediction_op == "loss" or dict_run_config.prediction_op == "loss_fixed_mask":
                logging.info("Fetching loss")
                predictions = {
                    "masked_lm_example_loss": masked_lm_example_loss,
                }
            else:
                raise Exception("prediction target not specified")

            output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
                    mode=mode,
                    loss=total_loss,
                    predictions=predictions,
                    scaffold_fn=scaffold_fn)

        return output_spec
Пример #25
0
 def dense(hidden_size, name):
     return tf.keras.layers.Dense(hidden_size,
                                  activation=tf.keras.activations.tanh,
                                  name=name,
                                  kernel_initializer=create_initializer(
                                      config.initializer_range))
Пример #26
0
    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        tf_logging.info("model_fn_sero_classification")
        """The `model_fn` for TPUEstimator."""
        log_features(features)

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]

        batch_size, _ = get_shape_list(input_mask)
        use_context = tf.ones([batch_size, 1], tf.int32)

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)
        # Updated
        if modeling == "sero":
            model_class = SeroDelta
            print("Using SeroDelta")
        elif modeling == "sero_epsilon":
            model_class = SeroEpsilon
            print("Using SeroEpsilon")
        else:
            assert False

        with tf.compat.v1.variable_scope("sero"):
            model = model_class(config, is_training,
                                train_config.use_one_hot_embeddings)
            input_ids = tf.expand_dims(input_ids, 1)
            input_mask = tf.expand_dims(input_mask, 1)
            segment_ids = tf.expand_dims(segment_ids, 1)
            sequence_output = model.network_stacked(input_ids, input_mask,
                                                    segment_ids, use_context)

        first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1)
        pooled_output = tf.keras.layers.Dense(
            config.hidden_size,
            activation=tf.keras.activations.tanh,
            kernel_initializer=create_initializer(
                config.initializer_range))(first_token_tensor)

        if "bias_loss" in special_flags:
            loss_weighting = reweight_zero
        else:
            loss_weighting = None

        task = Classification(3, features, pooled_output, is_training,
                              loss_weighting)
        loss = task.loss

        tvars = tf.compat.v1.trainable_variables()
        assignment_fn = assignment_map.assignment_map_v2_to_v2
        initialized_variable_names, init_fn = get_init_fn(
            tvars, train_config.init_checkpoint, assignment_fn)
        scaffold_fn = get_tpu_scaffold_or_init(init_fn, train_config.use_tpu)
        log_var_assignments(tvars, initialized_variable_names)

        TPUEstimatorSpec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec
        if mode == tf.estimator.ModeKeys.TRAIN:
            tf_logging.info("Using single lr ")
            train_op = optimization.create_optimizer_from_config(
                loss, train_config)
            output_spec = TPUEstimatorSpec(mode=mode,
                                           loss=loss,
                                           train_op=train_op,
                                           scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.EVAL:
            output_spec = TPUEstimatorSpec(mode=model,
                                           loss=loss,
                                           eval_metrics=task.eval_metrics(),
                                           scaffold_fn=scaffold_fn)
        elif mode == tf.estimator.ModeKeys.PREDICT:
            predictions = {"input_ids": input_ids, "logits": task.logits}
            output_spec = TPUEstimatorSpec(mode=model,
                                           loss=loss,
                                           predictions=predictions,
                                           scaffold_fn=scaffold_fn)
        return output_spec