def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.backbone = backbone(config.model) if hasattr(self.config.model, 'backbone_freeze'): if self.config.model.backbone_freeze: print('freeze backbone weights' + '*' * 30) freeze_layer(self.backbone) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.edge_class_num = self.config.dataset.edge_class_num self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) # out feature channels 512 self.branch_edge = get_suffix_net(self.config, self.midnet_out_channels, self.edge_class_num) # out feature channels 512 self.branch_seg = get_suffix_net(self.config, self.midnet_out_channels, self.class_number) # input=concat(512,512) self.feature_conv = conv_bn_relu(in_channels=512 + 512, out_channels=512, kernel_size=1, stride=1, padding=0) self.seg = get_suffix_net(self.config, 512, self.class_number)
def __init__(self,config): super().__init__() decoder_config=dict2edict(config) self.input_shape=config.input_shape self.upsample_layer=config['upsample_layer'] self.backbone=backbone(config,use_none_layer=config.use_none_layer) self.midnet_input_shape=self.backbone.get_output_shape(self.upsample_layer,self.input_shape) self.midnet_out_channels=2+self.midnet_input_shape[1] self.concat_size=self.midnet_input_shape[2:] self.class_number=config.class_number self.decoder=get_suffix_net(decoder_config, self.midnet_out_channels, self.class_number)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.upsample_layer = config.model.upsample_layer self.class_number = config.model.class_number self.backbone = backbone(config.model, use_none_layer=config.model.use_none_layer) self.panet = panet(config.model) self.midnet = transform_panet(self.backbone, self.panet, self.config) self.midnet_out_channels = self.backbone.get_feature_map_channel( self.upsample_layer) self.decoder = get_suffix_net(config, self.midnet_out_channels, self.class_number)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.backbone = backbone(config.model, use_none_layer=config.model.use_none_layer) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) self.midnet_out_channels = self.midnet_input_shape[1] self.decoder = get_suffix_net(config, self.midnet_out_channels, self.class_number)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ print('warnniing: use_none_layer is false for motionnet') self.backbone = backbone(config.model, use_none_layer=config.model.use_none_layer) self.upsample_type = self.config.model.upsample_type self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.midnet = transform_segnet(self.backbone, self.config) self.midnet_out_channels = self.backbone.get_feature_map_channel( self.upsample_layer) self.decoder = get_suffix_net(config, self.midnet_out_channels, self.class_number)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.backbone = backbone(config.model, use_none_layer=config.model.use_none_layer) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.auxnet_layer = self.config.model.auxnet_layer assert self.auxnet_layer >= 3 assert self.upsample_layer >= 3 assert self.upsample_layer >= self.auxnet_layer assert config.model.use_none_layer == True # use modified backbone, the output shape is the same for upsample_layer=[3,4,5] self.auxnet_input_shape = self.backbone.get_output_shape( self.auxnet_layer, self.input_shape) self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.auxnet_out_channels = self.auxnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) self.auxnet = get_suffix_net(self.config, self.auxnet_out_channels, self.class_number, aux=True) self.decoder = get_suffix_net(self.config, self.midnet_out_channels, self.class_number) if config.model.use_lr_mult: if config.model.use_none_layer and config.model.backbone_pretrained and self.upsample_layer >= 4: backbone_optmizer_params = get_backbone_optimizer_params( config.model.backbone_name, self.backbone.model, unchanged_lr_mult=1, changed_lr_mult=config.model.changed_lr_mult, new_lr_mult=config.model.new_lr_mult) else: backbone_optmizer_params = [{ 'params': [p for p in self.backbone.parameters() if p.requires_grad], 'lr_mult': 1 }] self.optimizer_params = backbone_optmizer_params + [ { 'params': self.midnet.parameters(), 'lr_mult': config.model.new_lr_mult }, { 'params': self.auxnet.parameters(), 'lr_mult': config.model.new_lr_mult }, { 'params': self.decoder.parameters(), 'lr_mult': config.model.new_lr_mult } ] else: self.optimizer_params = [{ 'params': [p for p in self.backbone.parameters() if p.requires_grad], 'lr_mult': 1 }, { 'params': self.midnet.parameters(), 'lr_mult': 1 }, { 'params': self.auxnet.parameters(), 'lr_mult': 1 }, { 'params': self.decoder.parameters(), 'lr_mult': 1 }] if not hasattr(config.model, 'aux_base_weight'): config.model.aux_base_weight = 0.4
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ use_none_layer = config.model.use_none_layer self.backbone = backbone(config.model, use_none_layer=use_none_layer) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) # self.midnet_out_channels=self.config.model.midnet_out_channels self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) self.decoder = get_suffix_net(config, self.midnet_out_channels, self.class_number) self.center_channels = self.decoder.center_channels # for pretrained module, use small lr_mult=1 # for modified module, use middle lr_mult=10 # for new module, use largest lr_mult=20 # for resnet, the begin layers is newed and the end layers is changed if self.config.model.backbone_freeze: self.optimizer_params = [{ 'params': self.midnet.parameters(), 'lr_mult': 1 }, { 'params': self.decoder.parameters(), 'lr_mult': 1 }] elif config.model.use_lr_mult: if use_none_layer and config.model.backbone_pretrained and self.upsample_layer >= 4: backbone_optmizer_params = get_backbone_optimizer_params( config.model.backbone_name, self.backbone, unchanged_lr_mult=config.model.pre_lr_mult, changed_lr_mult=config.model.changed_lr_mult, new_lr_mult=config.model.new_lr_mult) else: warnings.warn( 'config.model.use_lr_mult is True but not fully wored') backbone_optmizer_params = [{ 'params': [p for p in self.backbone.parameters() if p.requires_grad], 'lr_mult': config.model.pre_lr_mult }] self.optimizer_params = backbone_optmizer_params + [ { 'params': self.midnet.parameters(), 'lr_mult': config.model.new_lr_mult }, { 'params': self.decoder.parameters(), 'lr_mult': config.model.new_lr_mult } ] else: self.optimizer_params = [{ 'params': [p for p in self.backbone.parameters() if p.requires_grad], 'lr_mult': 1 }, { 'params': self.midnet.parameters(), 'lr_mult': 1 }, { 'params': self.decoder.parameters(), 'lr_mult': 1 }]
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.backbone = backbone(config.model) if hasattr(self.config.model, 'backbone_freeze'): if self.config.model.backbone_freeze: print('freeze backbone weights' + '*' * 30) freeze_layer(self.backbone) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.edge_class_num = self.config.dataset.edge_class_num self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) if hasattr(self.config.model, 'edge_seg_order'): self.edge_seg_order = self.config.model.edge_seg_order print('the edge and seg order is %s' % self.edge_seg_order, '*' * 30) assert self.edge_seg_order in [ 'same', 'first', 'later' ], 'unexcepted edge seg order %s' % self.edge_seg_order else: self.edge_seg_order = 'same' if self.edge_seg_order == 'same': self.seg_decoder = get_suffix_net(self.config, self.midnet_out_channels, self.class_number) self.edge_decoder = get_suffix_net(self.config, self.midnet_out_channels, self.edge_class_num) elif self.edge_seg_order == 'later': self.seg_decoder = get_suffix_net(self.config, self.midnet_out_channels, self.class_number) self.edge_decoder = get_suffix_net(self.config, 512, self.edge_class_num) else: self.edge_decoder = get_suffix_net(self.config, self.midnet_out_channels, self.edge_class_num) self.feature_conv = conv_bn_relu( in_channels=self.midnet_out_channels, out_channels=512, kernel_size=1, stride=1, padding=0) # the input is torch.cat[self.edge_class_num,self.class_number] self.seg_conv = conv_bn_relu(in_channels=512 + 512, out_channels=512, kernel_size=1, stride=1, padding=0) self.seg_decoder = get_suffix_net(self.config, 512, self.class_number)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ self.backbone = backbone(config.model) if hasattr(self.config.model, 'backbone_freeze'): if self.config.model.backbone_freeze: print('freeze backbone weights' + '*' * 30) freeze_layer(self.backbone) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.edge_class_num = self.config.dataset.edge_class_num self.cross_merge_times = self.config.model.cross_merge_times self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) self.seg0 = get_suffix_net(self.config, self.midnet_out_channels, self.class_number) self.edge0 = get_suffix_net(self.config, self.midnet_out_channels, self.edge_class_num) seg_list = [] edge_list = [] # before concat seg_conv_list = [] edge_conv_list = [] feature_channel = 512 concat_channel = feature_channel // 2 #TODO use psp other than conv for i in range(self.cross_merge_times): seg_conv_list.append( conv_bn_relu(in_channels=feature_channel, out_channels=concat_channel, kernel_size=1, stride=1, padding=0)) edge_conv_list.append( conv_bn_relu(in_channels=feature_channel, out_channels=concat_channel, kernel_size=1, stride=1, padding=0)) seg_list.append( get_suffix_net(self.config, 2 * concat_channel, self.class_number)) edge_list.append( get_suffix_net(self.config, 2 * concat_channel, self.edge_class_num)) self.seg_list = TN.ModuleList(seg_list) self.edge_list = TN.ModuleList(edge_list) self.seg_conv_list = TN.ModuleList(seg_conv_list) self.edge_conv_list = TN.ModuleList(edge_conv_list)
def __init__(self, config): super().__init__() self.config = config self.name = self.__class__.__name__ use_none_layer = config.model.use_none_layer self.backbone = backbone(config.model, use_none_layer=use_none_layer) if hasattr(self.config.model, 'backbone_freeze'): if self.config.model.backbone_freeze: # print('freeze backbone weights'+'*'*30) freeze_layer(self.backbone) self.upsample_layer = self.config.model.upsample_layer self.class_number = self.config.model.class_number self.input_shape = self.config.model.input_shape self.dataset_name = self.config.dataset.name self.ignore_index = self.config.dataset.ignore_index self.edge_class_num = self.config.dataset.edge_class_num self.midnet_input_shape = self.backbone.get_output_shape( self.upsample_layer, self.input_shape) # self.midnet_out_channels=self.config.model.midnet_out_channels self.midnet_out_channels = 2 * self.midnet_input_shape[1] self.midnet = get_midnet(self.config, self.midnet_input_shape, self.midnet_out_channels) self.decoder = get_suffix_net(config, self.midnet_out_channels, self.class_number) layer_shapes = self.backbone.get_layer_shapes(self.input_shape) print('layer shapes', layer_shapes) edge_aux_list = [] for i in range(self.upsample_layer - 1): edge_aux_list.append( TN.Conv2d(in_channels=layer_shapes[i + 1][1], out_channels=self.edge_class_num, kernel_size=1)) self.edge_aux_list = TN.ModuleList(edge_aux_list) self.edge_fusion_conv = TN.Conv2d(in_channels=self.edge_class_num * (self.upsample_layer - 1), out_channels=self.edge_class_num, kernel_size=1) self.optimizer_params = [{ 'params': [p for p in self.backbone.parameters() if p.requires_grad], 'lr_mult': 1 }, { 'params': self.edge_aux_list.parameters(), 'lr_mult': 1 }, { 'params': self.edge_fusion_conv.parameters(), 'lr_mult': 1 }, { 'params': self.midnet.parameters(), 'lr_mult': 10 }, { 'params': self.decoder.parameters(), 'lr_mult': 10 }]