Пример #1
0
 def train_test(self):
     epochs, best_epoch = self.train_neural_network()
     self.saver.restore(sess=self.session, save_path=self.save_path)
     test_correct, test_cls_pred, test_cost = self.predict_cls(
         mu=self.test_x_mu,
         logvar=self.test_x_logvar,
         labels=self.test_y,
         cls_true=(convert_labels_to_cls(self.test_y)))
     feed_dict = {
         self.x_lab_mu: self.test_x_mu,
         self.x_lab_logvar: self.test_x_logvar,
         self.y_lab: self.test_y
     }
     logits = self.session.run(self.y_lab_logits, feed_dict=feed_dict)
     plot_roc(logits, self.test_y, self.num_classes, name='Conv VAE Class')
     print_test_accuracy(test_correct, test_cls_pred, self.test_y, logging)
     plot_cost(training=self.train_cost,
               validation=self.validation_cost,
               name="Cost",
               epochs=epochs,
               best_epoch=best_epoch)
     plot_line(self.validation_accuracy,
               name='Validation Accuracy',
               epochs=epochs,
               best_epoch=best_epoch)
    def train_test(self):
        self.train_neural_network()
        self.saver.restore(sess=self.session, save_path=self.save_path)
        correct, cls_pred = self.predict_cls(images=self.test_x,
                                             labels=self.test_y,
                                             cls_true=(convert_labels_to_cls(self.test_y)))

        feed_dict = {self.x: self.test_x, self.y: self.test_y}
        logits = self.session.run(self.y_logits, feed_dict=feed_dict)
        plot_roc(logits, self.test_y, self.num_classes, name='MLP')
        print_test_accuracy(correct, cls_pred, self.test_y, logging)
Пример #3
0
 def train_test(self):
     self.train_neural_network()
     self.saver.restore(sess=self.session, save_path=self.save_path)
     correct, cls_pred, test_marg_lik = self.predict_cls(
         images=self.test_x,
         labels=self.test_y,
         cls_true=(convert_labels_to_cls(self.test_y)))
     feed_dict = {
         self.x_lab: self.test_x,
         self.y_lab: self.test_y,
         self.is_training: False
     }
     marg_print = "test marginal_likelihood:{}".format(test_marg_lik)
     print(marg_print)
     logging.debug(marg_print)
     print_test_accuracy(correct, cls_pred, self.test_y, logging)
     logits = self.session.run(self.y_lab_logits, feed_dict=feed_dict)
     plot_roc(logits, self.test_y, self.num_classes, name='auxiliary')
     self.test_reconstruction()