Пример #1
0
    def test_training(self):
        model = Yolov4P5(self.cfg)
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=0.01,
                                    momentum=0.9,
                                    nesterov=False)

        model = trainingModel(model.half(), optimizer=optimizer)
        loss = model(self.input_tensor)
Пример #2
0
def prepare_model(cfg):
    opt = argparse.ArgumentParser()
    opt.weights = 'weights/yolov4-p5-sd.pt'

    model = Yolov4P5(cfg)
    model.eval()
    model = load_and_fuse_pretrained_weights(model, opt)
    model.optimize_for_inference()

    ipu_opts = ipu_options(opt, cfg, model)
    return inferenceModel(model, ipu_opts)
Пример #3
0
    def test_inference_cpu_and_ipu(self):
        self.cfg.model.half = False
        self.cfg.model.image_size = 416
        self.cfg.inference.nms = False

        # Create CPU model
        torch.manual_seed(0)
        self.cfg.model.ipu = False
        model = Yolov4P5(self.cfg)
        cpu_model = model.eval()
        y_cpu = cpu_model(self.input_tensor)

        # Create IPU model
        torch.manual_seed(0)
        self.cfg.model.ipu = True
        model = Yolov4P5(self.cfg)
        ipu_model = inferenceModel(model.eval())
        y_ipu = ipu_model(self.input_tensor)

        assert torch.max(torch.abs(y_cpu[0] - y_ipu[0])) <= 0.002
        assert torch.max(torch.abs(y_cpu[1] - y_ipu[1])) <= 0.002
        assert torch.max(torch.abs(y_cpu[2] - y_ipu[2])) <= 0.002
Пример #4
0
def prepare_model(cfg, debugging_nms=False):
    opt = argparse.ArgumentParser()
    opt.weights = os.environ['PYTORCH_APPS_DETECTION_PATH'] + '/weights/yolov4-p5-sd.pt'

    model = Yolov4P5(cfg, debugging_nms=debugging_nms)
    model.eval()
    model = load_and_fuse_pretrained_weights(model, opt)
    model.optimize_for_inference()

    if cfg.model.ipu:
        ipu_opts = ipu_options(opt, cfg, model)
        return inferenceModel(model, ipu_opts)
    else:
        return model
Пример #5
0
def get_model_and_loader(opt: argparse.ArgumentParser,
                         cfg: yacs.config.CfgNode):
    """Prepares the model and gets a new loader for the model.
    Parameters:
        opt: opt object containing options introduced in the command line
        cfg: yacs object containing the config
    Returns:
        model[Detector]: a torch Detector Model
        loader[DataLoader]: a torch or poptorch DataLoader containing the specified dataset on "cfg"
    """

    # Create model
    model = Yolov4P5(cfg)

    if cfg.model.mode == "train":
        model.train()
    else:
        model.eval()

        # Load weights and fuses some batch normalizations with some convolutions
        if cfg.model.normalization == 'batch':
            if opt.weights:
                print("loading pretrained weights")
                model = load_and_fuse_pretrained_weights(model, opt)
            model.optimize_for_inference()

    # Create the specific ipu options if cfg.model.ipu
    ipu_opts = ipu_options(opt, cfg, model) if cfg.model.ipu else None

    # Creates the loader
    loader = get_loader(opt, cfg, ipu_opts)

    # Calls the poptorch wrapper and compiles the model
    if cfg.model.ipu:
        if cfg.model.mode == "train":
            model = trainingModel(model, ipu_opts)
        else:
            model = inferenceModel(model, ipu_opts)
        try:
            img, _, _, _ = next(iter(loader))
            model.compile(img)
            warm_up_iterations = 100
            for _ in range(warm_up_iterations):
                _ = model(img)
        except Exception as e:
            print(e.args)
            exit(0)

    return model, loader
Пример #6
0
    def test_inference(self):
        self.cfg.inference.nms = False
        model = Yolov4P5(self.cfg)
        model = inferenceModel(model.half().eval())
        y = model(self.input_tensor)

        expected_output_size = model.output_shape((64, 64))

        p3 = expected_output_size['p3']
        p4 = expected_output_size['p4']
        p5 = expected_output_size['p5']

        assert y[0].shape == torch.Size([p3[0], p3[1] * p3[2] * p3[3], p3[4]])
        assert y[1].shape == torch.Size([p4[0], p4[1] * p4[2] * p4[3], p4[4]])
        assert y[2].shape == torch.Size([p5[0], p5[1] * p5[2] * p5[3], p5[4]])
Пример #7
0
    def test_fused_inference(self):
        self.cfg.model.normalization = 'batch'
        self.cfg.model.half = False
        self.cfg.inference.nms = False

        model = Yolov4P5(self.cfg)
        before_fuse_model = inferenceModel(model.eval())
        before_fuse_output = before_fuse_model(self.input_tensor)

        model.optimize_for_inference()
        after_fuse_model = inferenceModel(model.eval())
        after_fuse_output = after_fuse_model(self.input_tensor)

        assert torch.max(
            torch.abs(after_fuse_output[0] - before_fuse_output[0])) <= 1e-4
        assert torch.max(
            torch.abs(after_fuse_output[1] - before_fuse_output[1])) <= 1e-4
        assert torch.max(
            torch.abs(after_fuse_output[2] - before_fuse_output[2])) <= 1e-4