def main(): path = input('Enter file path of your model:') with open(RAW_META_PATH, 'rb') as f: meta = msgpack.load(f, encoding='utf8') embedding = load_pickle(EMB_PATH) model = models.AttentionModel(path) w2id = {w: i for i, w in enumerate(meta['vocab'])} tag2id = {w: i for i, w in enumerate(meta['vocab_tag'])} ent2id = {w: i for i, w in enumerate(meta['vocab_ent'])} while True: id_ = 0 try: while True: context = input('Enter context: ') if context.strip(): break while True: question = input('Enter question: ') if question.strip(): break except EOFError: break id_ += 1 annotated = annotate(('interact-{}'.format(id_), context, question), meta['wv_cased']) model_in_raw = to_id(annotated, w2id, tag2id, ent2id) model_in = generate_batch(model_in_raw) start_probas, end_probas = model.model.predict(model_in) answ_pair = get_preds2(start_probas, end_probas, MAX_ANSW_LEN) print('Answer:', end=' ') for i in range(answ_pair[0][0], answ_pair[0][1] + 1): print(model_in_raw[6][model_in_raw[7][i][0]:model_in_raw[7][i][1] + 1], end='') print('\n\n\n-------------|||-------------\n\n\n')
img_dim=X.shape[2], n_outputs=10) results = {} for i in range(10): model.fit(X, y, epochs=1, batch_size=50, verbose=0) # EVALUATE TRAIN AND TEST CLASSIFICATION yhat = np.argmax(model.predict(X), axis=1) trainscore = (yhat == y).mean() yhat = np.argmax(model.predict(Xtest), axis=1) testscore = (yhat == ytest).mean() print("%d - Train score = %.3f" % (i, trainscore)) print("%d - Test score = %.3f\n" % (i, testscore)) # BASELINE TEST score IS 91% elif part == '7': X, y = du.load_dataset("boat_images", as_image=False) # TRAIN NETWORK model = models.AttentionModel(n_channels=3, n_outputs=1) model.fit(X, y, batch_size=23, epochs=100) show = lambda m, i: iu.show(m.get_heatmap(X)[i], X[i]) import pdb pdb.set_trace() # breakpoint 387f960a // show(model, 1)
def main(): path = input('Enter file path of your model:') att_model = models.AttentionModel(path) att_model.quality()
def main(): epochs = input('Enter amount of epochs') att_model = models.AttentionModel() att_model.train(n_epochs=epochs)