def test_models_for_pattern_model_cache(self): cache = { 'patternCenter': [4, 12], 'patternModel': [], 'confidence': 2, 'convolveMax': 8, 'convolveMin': 7, 'window_size': 2, 'convDelMin': 0, 'convDelMax': 0, } data_val = [ 5.0, 5.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0, 9.0, 9.0, 0, 0, 0, 0, 0, 0, 6.0, 6.0, 6.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] dataframe = create_dataframe(data_val) segments = [{ '_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000019, 'to': 1523889000024, 'labeled': True, 'deleted': False }] segments = [Segment.from_json(segment) for segment in segments] try: model = models.DropModel() model_name = model.__class__.__name__ model.state = model.get_state(cache) model.fit(dataframe, segments, 'test') except ValueError: self.fail('Model {} raised unexpectedly'.format(model_name))
def test_drop_empty_segment(self): data_val = [ 1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 5.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0, 9.0, 9.0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] dataframe = create_dataframe(data_val) segments = [{ '_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000019, 'to': 1523889000025, 'labeled': True, 'deleted': False }, { '_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': True, 'deleted': False }] segments = [Segment.from_json(segment) for segment in segments] try: model = models.DropModel() model.state = model.get_state(None) model_name = model.__class__.__name__ model.fit(dataframe, segments, 'test') except ValueError: self.fail('Model {} raised unexpectedly'.format(model_name))
def test_drop_antisegments(self): data_val = [9.0, 9.0, 9.0, 9.0, 9.0, 5.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 1.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0] dataframe = create_dataframe(data_val) segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000016, 'labeled': True, 'deleted': False}, {'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000002, 'to': 1523889000008, 'labeled': False, 'deleted': True}] try: model = models.DropModel() model_name = model.__class__.__name__ model.fit(dataframe, segments, dict()) except ValueError: self.fail('Model {} raised unexpectedly'.format(model_name))
def resolve_model_by_pattern(pattern: str) -> models.Model: if pattern == 'GENERAL': return models.GeneralModel() if pattern == 'PEAK': return models.PeakModel() if pattern == 'TROUGH': return models.TroughModel() if pattern == 'DROP': return models.DropModel() if pattern == 'JUMP': return models.JumpModel() if pattern == 'CUSTOM': return models.CustomModel() raise ValueError('Unknown pattern "%s"' % pattern)
def test_models_with_corrupted_dataframe(self): data = [[1523889000000 + i, float('nan')] for i in range(10)] dataframe = pd.DataFrame(data, columns=['timestamp', 'value']) segments = [] model_instances = [ models.JumpModel(), models.DropModel(), models.GeneralModel(), models.PeakModel(), models.TroughModel() ] try: for model in model_instances: model_name = model.__class__.__name__ model.fit(dataframe, segments, dict()) except ValueError: self.fail('Model {} raised unexpectedly'.format(model_name))
def test_models_with_corrupted_dataframe(self): data = [[1523889000000 + i, float('nan')] for i in range(10)] dataframe = pd.DataFrame(data, columns=['timestamp', 'value']) segments = [] model_instances = [ models.JumpModel(), models.DropModel(), models.GeneralModel(), models.PeakModel(), models.TroughModel() ] for model in model_instances: model_name = model.__class__.__name__ model.state = model.get_state(None) with self.assertRaises(AssertionError): model.fit(dataframe, segments, 'test')
def test_models_for_pattern_model_cache(self): cache = { 'pattern_center': [4, 12], 'pattern_model': [], 'confidence': 2, 'convolve_max': 8, 'convolve_min': 7, 'WINDOW_SIZE': 2, 'conv_del_min': 0, 'conv_del_max': 0, } data_val = [5.0, 5.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0, 9.0, 9.0, 9.0, 9.0, 0, 0, 0, 0, 0, 0, 6.0, 6.0, 6.0, 1.0, 1.0, 1.0, 1.0, 1.0] dataframe = create_dataframe(data_val) segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000019, 'to': 1523889000024, 'labeled': True, 'deleted': False}] try: model = models.DropModel() model_name = model.__class__.__name__ model.fit(dataframe, segments, cache) except ValueError: self.fail('Model {} raised unexpectedly'.format(model_name))