Пример #1
0
])

dataset = NewDogCat(root=opt.dataRoot, transform=transform)

dataloader = torch.utils.data.DataLoader(dataset,
                                         batch_size=opt.batchSize,
                                         collate_fn=my_collate_fn,
                                         shuffle=True,
                                         num_workers=opt.workers)

# load models
if opt.model == 1:
    netG = models._netG_1(ngpu, nz, nc, ngf, n_extra_g)
    netD = models._netD_1(ngpu, nz, nc, ndf, n_extra_d)
elif opt.model == 2:
    netG = models._netG_2(ngpu, nz, nc, ngf)
    netD = models._netD_2(ngpu, nz, nc, ndf)

netG.apply(weights_init)
if opt.netG != '':
    netG.load_state_dict(torch.load(opt.netG))
print(netG)

netD.apply(weights_init)
if opt.netD != '':
    netD.load_state_dict(torch.load(opt.netD))
print(netD)

criterion = nn.BCELoss()
criterion_MSE = nn.MSELoss()
Пример #2
0
    transform=transforms.Compose([
            transforms.Scale(opt.imageSize),
            # transforms.CenterCrop(opt.imageSize),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)), # bring images to (-1,1)
        ])
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
                                         shuffle=True, num_workers=opt.workers)

# load models 
if opt.model == 1:
    netG = models._netG_1(ngpu, nz, nc, ngf, n_extra_g)
    netD = models._netD_1(ngpu, nz, nc, ndf, n_extra_d)
elif opt.model == 2:
    netG = models._netG_2(ngpu, nz, nc, ngf)
    netD = models._netD_2(ngpu, nz, nc, ndf)

netG.apply(weights_init)
if opt.netG != '':
    netG.load_state_dict(torch.load(opt.netG))
print(netG)

netD.apply(weights_init)
if opt.netD != '':
    netD.load_state_dict(torch.load(opt.netD))
print(netD)

criterion = nn.BCELoss()
criterion_MSE = nn.MSELoss()