def make_conv1(): latent_dim = 16 x_shape = (128, 54) huzz = HuzzerSource() data_pipeline = OneHotVecotorizer(TokenDatasource(huzz), x_shape[1], x_shape[0]) decoder_input = tf.placeholder(tf.float32, shape=(1, latent_dim), name='decoder_input') with conv_arg_scope(): encoder_input = tf.placeholder(tf.float32, shape=(1, *x_shape), name='encoder_input') encoder_output, _ = build_conv1_encoder(encoder_input, latent_dim) decoder_output = build_conv1_decoder(decoder_input, x_shape) decoder_output = tf.reshape(decoder_output, x_shape) return data_pipeline, encoder_input, encoder_output, decoder_input, decoder_output
def make_special_conv(): latent_dim = 64 x_shape = (128, 54) huzz = HuzzerSource() data_pipeline = OneHotVecotorizer(TokenDatasource(huzz), x_shape[1], x_shape[0]) decoder_input = tf.placeholder(tf.float32, shape=(1, latent_dim), name='decoder_input') encoder_input = tf.placeholder(tf.float32, shape=(1, *x_shape), name='encoder_input') with conv_arg_scope(): encoder_output, _ = build_special_conv_encoder(encoder_input, latent_dim) decoder_output = build_special_conv_decoder(decoder_input, x_shape) decoder_output = tf.nn.softmax(decoder_output, dim=-1) decoder_output = tf.squeeze(decoder_output, 0) return data_pipeline, encoder_input, encoder_output, decoder_input, decoder_output