def get_export_data(cls): count_attrs = ['state', 'has_been_read', 'vote'] edits_attrs = ['state', 'vote', 'note'] data = { 'public': { 'votes': { 'counts': export_attr_counts(cls, count_attrs), 'edits': export_attr_edits(cls, edits_attrs), }, }, 'tables': ['cfp_vote', 'cfp_vote_version'], } data['public']['votes']['counts']['created_day'] = export_intervals(cls.query, cls.created, 'day', 'YYYY-MM-DD') return data
def get_export_data(cls): count_attrs = ['state', 'has_been_read', 'vote'] edits_attrs = ['state', 'vote', 'note'] data = { 'public': { 'votes': { 'counts': export_attr_counts(cls, count_attrs), 'edits': export_attr_edits(cls, edits_attrs), }, }, 'tables': ['cfp_vote', 'cfp_vote_version'], } data['public']['votes']['counts']['created_day'] = export_intervals( cls.query, cls.created, 'day', 'YYYY-MM-DD') return data
def get_export_data(cls): count_attrs = ["state", "has_been_read", "vote"] edits_attrs = ["state", "vote", "note"] data = { "public": { "votes": { "counts": export_attr_counts(cls, count_attrs), "edits": export_attr_edits(cls, edits_attrs), } }, "tables": ["cfp_vote", "cfp_vote_version"], } data["public"]["votes"]["counts"]["created_day"] = export_intervals( cls.query, cls.created, "day", "YYYY-MM-DD") return data
def get_export_data(cls): if cls.__name__ == 'Proposal': # Export stats for each proposal type separately return {} count_attrs = [ 'needs_help', 'needs_money', 'needs_laptop', 'one_day', 'notice_required', 'may_record', 'state' ] edits_attrs = [ 'published_title', 'published_description', 'requirements', 'length', 'notice_required', 'needs_help', 'needs_money', 'one_day', 'has_rejected_email', 'published_names', 'arrival_period', 'departure_period', 'telephone_number', 'may_record', 'needs_laptop', 'available_times', 'attendees', 'cost', 'size', 'funds', 'age_range', 'participant_equipment' ] # FIXME: include published_title proposals = cls.query.with_entities( cls.id, cls.title, cls.description, cls.favourite_count, # don't care about performance here cls.length, cls.notice_required, cls.needs_money, cls.available_times, cls.allowed_times, cls.arrival_period, cls.departure_period, cls.needs_laptop, cls.may_record, ).order_by(cls.id) if cls.__name__ == 'WorkshopProposal': proposals = proposals.add_columns(cls.attendees, cls.cost) elif cls.__name__ == 'InstallationProposal': proposals = proposals.add_columns(cls.size, cls.funds) elif cls.__name__ == 'YouthWorkshopProposal': proposals = proposals.add_columns(cls.attendees, cls.cost, cls.age_range, cls.participant_equipment) # Some unaccepted proposals have scheduling data, but we shouldn't need to keep that accepted_columns = ( User.name, User.email, cls.published_names, cls.scheduled_time, cls.scheduled_duration, Venue.name, ) accepted_proposals = proposals.filter(cls.state.in_(['accepted', 'finished'])) \ .outerjoin(cls.scheduled_venue) \ .join(cls.user) \ .add_columns(*accepted_columns) other_proposals = proposals.filter( ~cls.state.in_(['accepted', 'finished'])) user_favourites = cls.query.filter(cls.state.in_(['accepted', 'finished'])) \ .join(cls.favourites) \ .with_entities(User.id.label('user_id'), cls.id) \ .order_by(User.id) anon_favourites = [] for user_id, proposals in groupby(user_favourites, lambda r: r.user_id): anon_favourites.append([p.id for p in proposals]) anon_favourites.sort() public_columns = ( cls.published_title, cls.published_description, cls.published_names.label('names'), cls.may_record, cls.scheduled_time, cls.scheduled_duration, Venue.name.label('venue'), ) accepted_public = cls.query.filter(cls.state.in_(['accepted', 'finished'])) \ .outerjoin(cls.scheduled_venue) \ .with_entities(*public_columns) favourite_counts = [p.favourite_count for p in proposals] data = { 'private': { 'proposals': { 'accepted_proposals': accepted_proposals, 'other_proposals': other_proposals, }, 'favourites': anon_favourites, }, 'public': { 'proposals': { 'counts': export_attr_counts(cls, count_attrs), 'edits': export_attr_edits(cls, edits_attrs), 'accepted': accepted_public, }, 'favourites': { 'counts': bucketise(favourite_counts, [0, 1, 10, 20, 30, 40, 50, 100, 200]), }, }, 'tables': [ 'proposal', 'proposal_version', 'favourite_proposal', 'favourite_proposal_version' ], } data['public']['proposals']['counts'][ 'created_week'] = export_intervals(cls.query, cls.created, 'week', 'YYYY-MM-DD') return data
def get_export_data(cls): if cls.__name__ == "Proposal": # Export stats for each proposal type separately return {} count_attrs = [ "needs_help", "needs_money", "needs_laptop", "one_day", "notice_required", "may_record", "state", ] edits_attrs = [ "published_title", "published_description", "requirements", "length", "notice_required", "needs_help", "needs_money", "one_day", "has_rejected_email", "published_names", "arrival_period", "departure_period", "telephone_number", "may_record", "needs_laptop", "available_times", "attendees", "cost", "size", "funds", "age_range", "participant_equipment", ] # FIXME: include published_title proposals = cls.query.with_entities( cls.id, cls.title, cls.description, cls.favourite_count, # don't care about performance here cls.length, cls.notice_required, cls.needs_money, cls.available_times, cls.allowed_times, cls.arrival_period, cls.departure_period, cls.needs_laptop, cls.may_record, ).order_by(cls.id) if cls.__name__ == "WorkshopProposal": proposals = proposals.add_columns(cls.attendees, cls.cost) elif cls.__name__ == "InstallationProposal": proposals = proposals.add_columns(cls.size, cls.funds) elif cls.__name__ == "YouthWorkshopProposal": proposals = proposals.add_columns( cls.attendees, cls.cost, cls.age_range, cls.participant_equipment ) # Some unaccepted proposals have scheduling data, but we shouldn't need to keep that accepted_columns = ( User.name, User.email, cls.published_names, cls.scheduled_time, cls.scheduled_duration, Venue.name, ) accepted_proposals = ( proposals.filter(cls.state.in_(["accepted", "finished"])) .outerjoin(cls.scheduled_venue) .join(cls.user) .add_columns(*accepted_columns) ) other_proposals = proposals.filter(~cls.state.in_(["accepted", "finished"])) user_favourites = ( cls.query.filter(cls.state.in_(["accepted", "finished"])) .join(cls.favourites) .with_entities(User.id.label("user_id"), cls.id) .order_by(User.id) ) anon_favourites = [] for user_id, proposals in groupby(user_favourites, lambda r: r.user_id): anon_favourites.append([p.id for p in proposals]) anon_favourites.sort() public_columns = ( cls.published_title, cls.published_description, cls.published_names.label("names"), cls.may_record, cls.scheduled_time, cls.scheduled_duration, Venue.name.label("venue"), ) accepted_public = ( cls.query.filter(cls.state.in_(["accepted", "finished"])) .outerjoin(cls.scheduled_venue) .with_entities(*public_columns) ) favourite_counts = [p.favourite_count for p in proposals] data = { "private": { "proposals": { "accepted_proposals": accepted_proposals, "other_proposals": other_proposals, }, "favourites": anon_favourites, }, "public": { "proposals": { "counts": export_attr_counts(cls, count_attrs), "edits": export_attr_edits(cls, edits_attrs), "accepted": accepted_public, }, "favourites": { "counts": bucketise( favourite_counts, [0, 1, 10, 20, 30, 40, 50, 100, 200] ) }, }, "tables": [ "proposal", "proposal_version", "favourite_proposal", "favourite_proposal_version", ], } data["public"]["proposals"]["counts"]["created_week"] = export_intervals( cls.query, cls.created, "week", "YYYY-MM-DD" ) return data
def get_export_data(cls): if cls.__name__ == 'Proposal': # Export stats for each proposal type separately return {} count_attrs = ['needs_help', 'needs_money', 'needs_laptop', 'one_day', 'notice_required', 'may_record', 'state'] edits_attrs = ['published_title', 'published_description', 'requirements', 'length', 'notice_required', 'needs_help', 'needs_money', 'one_day', 'has_rejected_email', 'published_names', 'arrival_period', 'departure_period', 'telephone_number', 'may_record', 'needs_laptop', 'available_times', 'attendees', 'cost', 'size', 'funds', 'age_range', 'participant_equipment'] # FIXME: include published_title proposals = cls.query.with_entities( cls.id, cls.title, cls.description, cls.favourite_count, # don't care about performance here cls.length, cls.notice_required, cls.needs_money, cls.available_times, cls.allowed_times, cls.arrival_period, cls.departure_period, cls.needs_laptop, cls.may_record, ).order_by(cls.id) if cls.__name__ == 'WorkshopProposal': proposals = proposals.add_columns(cls.attendees, cls.cost) elif cls.__name__ == 'InstallationProposal': proposals = proposals.add_columns(cls.size, cls.funds) elif cls.__name__ == 'YouthWorkshopProposal': proposals = proposals.add_columns(cls.attendees, cls.cost, cls.age_range, cls.participant_equipment) # Some unaccepted proposals have scheduling data, but we shouldn't need to keep that accepted_columns = ( User.name, User.email, cls.published_names, cls.scheduled_time, cls.scheduled_duration, Venue.name, ) accepted_proposals = proposals.filter(cls.state.in_(['accepted', 'finished'])) \ .outerjoin(cls.scheduled_venue) \ .join(cls.user) \ .add_columns(*accepted_columns) other_proposals = proposals.filter(~cls.state.in_(['accepted', 'finished'])) user_favourites = cls.query.filter(cls.state.in_(['accepted', 'finished'])) \ .join(cls.favourites) \ .with_entities(User.id.label('user_id'), cls.id) \ .order_by(User.id) anon_favourites = [] for user_id, proposals in groupby(user_favourites, lambda r: r.user_id): anon_favourites.append([p.id for p in proposals]) anon_favourites.sort() public_columns = ( cls.published_title, cls.published_description, cls.published_names.label('names'), cls.may_record, cls.scheduled_time, cls.scheduled_duration, Venue.name.label('venue'), ) accepted_public = cls.query.filter(cls.state.in_(['accepted', 'finished'])) \ .outerjoin(cls.scheduled_venue) \ .with_entities(*public_columns) favourite_counts = [p.favourite_count for p in proposals] data = { 'private': { 'proposals': { 'accepted_proposals': accepted_proposals, 'other_proposals': other_proposals, }, 'favourites': anon_favourites, }, 'public': { 'proposals': { 'counts': export_attr_counts(cls, count_attrs), 'edits': export_attr_edits(cls, edits_attrs), 'accepted': accepted_public, }, 'favourites': { 'counts': bucketise(favourite_counts, [0, 1, 10, 20, 30, 40, 50, 100, 200]), }, }, 'tables': ['proposal', 'proposal_version', 'favourite_proposal', 'favourite_proposal_version'], } data['public']['proposals']['counts']['created_week'] = export_intervals(cls.query, cls.created, 'week', 'YYYY-MM-DD') return data