if nh < newH:
        im = cv2.resize(im_cpu, (newW, newH), interpolation=cv2.INTER_AREA)
    else:
        im = cv2.resize(im_cpu, (newW, newH), interpolation=cv2.INTER_LINEAR)

    newEnvWidth = newW
    newEnvHeight = newH

    im = (np.transpose(im, [2, 0, 1]).astype(np.float32) /
          255.0)[np.newaxis, :, :, :]
    im = im / im.max()
    imBatchSmall = Variable(torch.from_numpy(im**(2.2))).cuda()
    renderLayer = models.renderingLayer(isCuda=opt.cuda,
                                        imWidth=newEnvWidth,
                                        imHeight=newEnvHeight,
                                        fov=fov,
                                        envWidth=opt.envWidth,
                                        envHeight=opt.envHeight)

    output2env = models.output2env(isCuda=opt.cuda,
                                   envWidth=opt.envWidth,
                                   envHeight=opt.envHeight,
                                   SGNum=opt.SGNum)

    ########################################################
    # Build the cascade network architecture #
    albedoPreds, normalPreds, roughPreds, depthPreds = [], [], [], []
    albedoBSPreds, roughBSPreds, depthBSPreds = [], [], []
    envmapsPreds, envmapsPredImages, renderedPreds = [], [], []
    cAlbedos = []
    cLights = []
    torch.load('{0}/normalRefs{1}_{2}.pth'.format(opt.modelRoot,
                                                  opt.cascadeLevel,
                                                  opt.epochId)))
roughRefs[0].load_state_dict(
    torch.load('{0}/roughRefs{1}_{2}.pth'.format(opt.modelRoot,
                                                 opt.cascadeLevel,
                                                 opt.epochId)))
depthRefs[0].load_state_dict(
    torch.load('{0}/depthRefs{1}_{2}.pth'.format(opt.modelRoot,
                                                 opt.cascadeLevel,
                                                 opt.epochId)))
envRefs[0].load_state_dict(
    torch.load('{0}/envRefs{1}_{2}.pth'.format(opt.modelRoot, opt.cascadeLevel,
                                               opt.epochId)))

renderLayer = models.renderingLayer(gpuId=opt.gpuId, isCuda=opt.cuda)

globIllu1to2.load_state_dict(
    torch.load('{0}/globIllu1to2_{1}.pth'.format(opt.modelRootGlob,
                                                 opt.epochIdGlob)))
globIllu2to3.load_state_dict(
    torch.load('{0}/globIllu2to3_{1}.pth'.format(opt.modelRootGlob,
                                                 opt.epochIdGlob)))

for param in encoderRefs[0].parameters():
    param.requires_grad = False
for param in albedoRefs[0].parameters():
    param.requires_grad = False
for param in normalRefs[0].parameters():
    param.requires_grad = False
for param in roughRefs[0].parameters():
Пример #3
0
roughDecoder = models.decoder0(mode=2 )
depthDecoder = models.decoder0(mode=4 )

encoder1 = models.encoder0(cascadeLevel = 1 )
albedoDecoder1 = models.decoder0(mode=0 )
normalDecoder1 = models.decoder0(mode=1 )
roughDecoder1 = models.decoder0(mode=2 )
depthDecoder1 = models.decoder0(mode=4 )

lightEncoder = models.encoderLight(cascadeLevel = 0, SGNum = opt.SGNum )
axisDecoder = models.decoderLight(mode=0, SGNum = opt.SGNum )
lambDecoder = models.decoderLight(mode = 1, SGNum = opt.SGNum )
weightDecoder = models.decoderLight(mode = 2, SGNum = opt.SGNum )

renderLayer = models.renderingLayer(isCuda = opt.cuda,
        imWidth=opt.envCol, imHeight=opt.envRow,
        envWidth = opt.envWidth, envHeight = opt.envHeight)

output2env = models.output2env(isCuda = opt.cuda,
        envWidth = opt.envWidth, envHeight = opt.envHeight, SGNum = opt.SGNum )
####################################################################


#########################################
encoder.load_state_dict(
        torch.load('{0}/encoder{1}_{2}.pth'.format(opt.experimentBRDF0, 0,
            opt.nepochBRDF0-1 ) ).state_dict() )
albedoDecoder.load_state_dict(
        torch.load('{0}/albedo{1}_{2}.pth'.format(opt.experimentBRDF0, 0,
            opt.nepochBRDF0-1 ) ).state_dict() )
normalDecoder.load_state_dict(