Пример #1
0
 def test_explain_model_imbalanced_classes(self, mimic_explainer):
     model = retrieve_model('unbalanced_model.pkl')
     x_train = retrieve_dataset('unbalanced_dataset.npz')
     model_predictions = model.predict(x_train)
     # Assert the model's predictions are skewed
     assert len(np.unique(model_predictions)) == 2
     explainable_model = LGBMExplainableModel
     explainer = mimic_explainer(model, x_train, explainable_model, max_num_of_augmentations=10)
     global_explanation = explainer.explain_global(x_train, include_local=True)
     # There should be an explanation per feature
     assert len(global_explanation.global_importance_values) == 1585
     # We should get back an explanation for each class
     assert len(global_explanation.local_importance_values) == 3
     # Get the underlying multiclass model
     surrogate_predictions = explainer.surrogate_model.model.predict(x_train)
     assert len(np.unique(surrogate_predictions)) == 2
     assert len(np.unique(model_predictions)) == 2
     assert np.isclose(surrogate_predictions, model_predictions).all()
Пример #2
0
def preload_models():
    for model_name in MODELS_NAMES:
        retrieve_model(model_name)