path_project = os.path.abspath('..') logger = SummaryWriter('../logs') args = args_parser() exp_details(args) device = 'cuda' train_dataset, test_dataset, user_groups = get_dataset(args) global_model = CNNCifar(args=args) V2 = CNNCifar(args=args) V2.to(device) global_model.to(device) global_model.train() print(global_model) global_weights = global_model.state_dict() train_loss, test_accuracy = [], [] val_acc_list, net_list = [], [] cv_loss, cv_acc = [], [] print_every = 2 val_loss_pre, counter = 0, 0 x = 0 my_sum = 0 for epoch in tqdm(range(100)): x += 1 local_weights, local_losses = [], [] print(f'\n | Global Training Round : {epoch+1} |\n')
path_project = os.path.abspath('..') logger = SummaryWriter('../logs') args = args_parser() exp_details(args) device = 'cuda' # load dataset and user groups train_dataset, test_dataset, user_groups = get_dataset(args) global_model = CNNCifar(args=args) new_global_model = CNNCifar(args=args) new_global_model.to(device) new_global_model.train() chafen_global_model = CNNCifar(args=args) chafen_global_model.to(device) chafen_global_model.train() chafen_local_model = CNNCifar(args=args) chafen_local_model.to(device) chafen_local_model.train() global_model.to(device) global_model.train() print(global_model) V2 = CNNCifar(args=args) V2.to(device) # copy weights global_weights = global_model.state_dict() new_global_weights = new_global_model.state_dict() chafen_global_weights = chafen_global_model.state_dict()