lr=args.lr, betas=(0, 0.999)) if state is not None: optimizer.load_state_dict(state) return optimizer def set_learning_rate(optimizer, lr): for param_group in optimizer.param_groups: param_group['lr'] = lr # Build model, optimizer, and set states meta_net = OmniglotModel(args.classes) if args.cuda: meta_net.cuda() meta_optimizer = torch.optim.SGD(meta_net.parameters(), lr=args.meta_lr) info = {} state = None # checkpoint is directory -> Find last model or '' if does not exist if os.path.isdir(args.checkpoint): latest_checkpoint = find_latest_file(check_dir) if latest_checkpoint: print 'Latest checkpoint found:', latest_checkpoint args.checkpoint = os.path.join(check_dir, latest_checkpoint) else: args.checkpoint = '' # Start fresh if args.checkpoint == '':
return train_loss, test_loss, acc fc_dim = 32 parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) data_dir = os.path.join(parent_dir, 'data') word2index_path = os.path.join(data_dir, 'word2index.pkl') emb_mat_path = os.path.join(data_dir, 'emb_mat.npy') word2index = load_pkl(word2index_path) emb_mat = np.load(emb_mat_path) vocab_size = len(word2index) + 2 # Build model, optimizer, and set states meta_net = OmniglotModel(fc_dim, args.classes, vocab_size, emb_mat, args.cuda) meta_net.cuda(args.cuda) meta_optimizer = torch.optim.SGD(meta_net.parameters(), lr=args.meta_lr) state = None cca_state = None # fast_optimizer cca_optimizer = torch.optim.RMSprop(meta_net.parameters(), lr=1e-3, weight_decay=1e-5) outdim_size = fc_dim # 32 use_all_singular_values = False loss_fn = nn.CrossEntropyLoss() cca_loss = CCALoss(outdim_size, use_all_singular_values, args.cuda) # For Evaluation Datasets