def run(): file_path = os.path.dirname( os.path.realpath(__file__)) + "/dlmb_mnist_example.json" # If a file of the neural-net model's architexture already exists, # then there is no need to build a new model. if os.path.isfile(file_path): # load the model and get its predictions based on x_test nn_model = Sequential() nn_model.load(file_path) predictions = nn_model.predict(x_test) # compare the predictions to the correct labels print( f"This model got a {validate_model(predictions, y_test)/100}% accuracy" ) # If the file doesn't exist then we need to build a neural-net model and train it. else: # Build the neural-net model nn_model = Sequential([ Dense( 128, 784, activation="ReLU" ), # for the layer_dim we want 128 outputs and 784 inputs (each pixel on the image) Batchnorm(128), Dense(128, 128, activation="ReLU"), Batchnorm(128), Dense(32, 128, activation="ReLU"), Batchnorm(32), Dense(10, 32, activation="Softmax" ) # We have 10 nodes in the layer for each number from 0 - 9 ]) nn_model.build(loss="crossentropy", optimizer="adam") # Crossentropy is a good loss function when you are doing logistic regression (classification) # Adam is one of the most popular optimizers nn_model.train(x_train, y_train, epochs=10, batch_size=1000) # Train the model # We go through the data 10 times and split the data of 60000 samples into 1000 sized batches leaving 60 samples # Now we save the model so we can use it again without re-training nn_model.save(file_path) # When saving, files must end in .json
train_y = convert_to_one_hot(train_y, num_classes) test_x = np.reshape(test_x, (len(test_x), 1, img_rows, img_cols)).astype(skml_config.config.i_type) test_y = convert_to_one_hot(test_y, num_classes) train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y) filters = 64 model = Sequential() model.add(Convolution(filters, 3, input_shape=input_shape)) model.add(BatchNormalization()) model.add(ReLU()) model.add(MaxPooling(2)) model.add(Convolution(filters, 3)) model.add(BatchNormalization()) model.add(ReLU()) model.add(GlobalAveragePooling()) model.add(Affine(num_classes)) model.compile(SoftmaxCrossEntropy(), Adam()) train_batch_size = 100 valid_batch_size = 1 print("訓練開始: {}".format(datetime.now().strftime("%Y/%m/%d %H:%M"))) model.fit(train_x, train_y, train_batch_size, 20, validation_data=(valid_batch_size, valid_x, valid_y), validation_steps=1) print("訓練終了: {}".format(datetime.now().strftime("%Y/%m/%d %H:%M"))) model.save(save_path) loss, acc = model.evaluate(test_x, test_y) print("Test loss: {}".format(loss)) print("Test acc: {}".format(acc))
bias_initializer=zeros)) model.add(Sigmoid()) model.add( Dense(10, 16, kernel_initializer=truncated_normal, bias_initializer=zeros)) model.add(Sigmoid()) loss = SquaredError() loss_history = model.fit(train_imgs, train_labels_one_hot, batch_size=32, epochs=10, loss=loss, halt=False) pred = model.predict(test_imgs) pred_labels = pred.argmax(1) print("MSE", loss.evaluate(pred, test_labels_one_hot).mean(0)) print("Percentage correct", np.mean(pred_labels == test_labels) * 100) print("Prediction for first 5 images") print(pred[0:5, :].argmax(1)) print("True labels") print(test_labels[0:5]) plt.plot(np.arange(0, 10), loss_history.mean(1)) plt.title("Graph of mean loss over all one-hot outputs") plt.xlabel("Epoch") plt.ylabel("Mean loss") plt.show() print(model.save("mnist_model.pkl"))