args.symbolic_env, env.observation_size, args.belief_size, args.state_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) reward_model = RewardModel( args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) encoder = Encoder(args.symbolic_env, env.observation_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) actor_model = ActorModel(args.belief_size, args.state_size, args.hidden_size, env.action_size, args.dense_activation_function).to(device=args.device) value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) param_list = list(transition_model.parameters()) + list( observation_model.parameters()) + list(reward_model.parameters()) + list( encoder.parameters()) value_actor_param_list = list(value_model.parameters()) + list( actor_model.parameters()) params_list = param_list + value_actor_param_list model_optimizer = optim.Adam( param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon) actor_optimizer = optim.Adam( actor_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate, eps=args.adam_epsilon) value_optimizer = optim.Adam( value_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate, eps=args.adam_epsilon) if args.models is not '' and os.path.exists(args.models):
t += 1 print('this random get reward',single_trial_reward,'pass gate num:',env._env.gate_counter) # print() metrics['steps'].append(t * args.action_repeat + (0 if len(metrics['steps']) == 0 else metrics['steps'][-1])) metrics['episodes'].append(s) # Initialise model parameters randomly transition_model = TransitionModel(args.belief_size, args.state_size, env.action_size, args.hidden_size, args.embedding_size, args.dense_activation_function).to(device=args.device) observation_model = ObservationModel(args.symbolic_env, env.observation_size, args.belief_size, args.state_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) encoder = Encoder(args.symbolic_env, env.observation_size, args.embedding_size, args.cnn_activation_function).to(device=args.device) actor_model = ActorModel(args.belief_size, args.state_size, args.hidden_size, env.action_size, args.dense_activation_function).to(device=args.device) value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) param_list = list(transition_model.parameters()) + list(observation_model.parameters()) + list(reward_model.parameters()) + list(encoder.parameters()) value_actor_param_list = list(value_model.parameters()) + list(actor_model.parameters()) params_list = param_list + value_actor_param_list model_optimizer = optim.Adam(param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon) actor_optimizer = optim.Adam(actor_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate, eps=args.adam_epsilon) value_optimizer = optim.Adam(value_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate, eps=args.adam_epsilon) if args.models is not '' and os.path.exists(args.models): model_dicts = torch.load(args.models) transition_model.load_state_dict(model_dicts['transition_model']) observation_model.load_state_dict(model_dicts['observation_model']) reward_model.load_state_dict(model_dicts['reward_model']) encoder.load_state_dict(model_dicts['encoder']) actor_model.load_state_dict(model_dicts['actor_model']) value_model.load_state_dict(model_dicts['value_model']) model_optimizer.load_state_dict(model_dicts['model_optimizer']) if args.algo=="dreamer": print("DREAMER")
class Algorithms(object): def __init__(self, action_size, transition_model, encoder, reward_model, observation_model): self.encoder, self.reward_model, self.transition_model, self.observation_model = encoder, reward_model, transition_model, observation_model self.merge_value_model = ValueModel( args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) self.merge_actor_model = MergeModel( args.belief_size, args.state_size, args.hidden_size, action_size, args.pool_len, args.dense_activation_function).to(device=args.device) self.merge_actor_model.share_memory() self.merge_value_model.share_memory() # set actor, value pool self.actor_pool = [ ActorModel(args.belief_size, args.state_size, args.hidden_size, action_size, args.dense_activation_function).to(device=args.device) for _ in range(args.pool_len) ] self.value_pool = [ ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(device=args.device) for _ in range(args.pool_len) ] [actor.share_memory() for actor in self.actor_pool] [value.share_memory() for value in self.value_pool] self.env_model_modules = get_modules([ self.transition_model, self.encoder, self.observation_model, self.reward_model ]) self.actor_pool_modules = get_modules(self.actor_pool) self.model_modules = self.env_model_modules + self.actor_pool_modules self.merge_value_model_modules = get_modules([self.merge_value_model]) self.merge_actor_optimizer = optim.Adam( self.merge_actor_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate, eps=args.adam_epsilon) self.merge_value_optimizer = optim.Adam( self.merge_value_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate, eps=args.adam_epsilon) self.actor_pipes = [ Pipe() for i in range(1, len(self.actor_pool) + 1) ] # Set Multi Pipe self.workers_actor = [ Worker_actor(actor_l=self.actor_pool[i], value_l=self.value_pool[i], transition_model=self.transition_model, encoder=self.encoder, observation_model=self.observation_model, reward_model=self.reward_model, child_conn=child, results_dir=args.results_dir, id=i + 1) for i, [parent, child] in enumerate(self.actor_pipes) ] # Set Worker_actor Using i'th actor_pipes [w.start() for i, w in enumerate(self.workers_actor)] # Start Single Process self.metrics = { 'episodes': [], 'merge_actor_loss': [], 'merge_value_loss': [] } self.merge_losses = [] def get_action(self, belief, posterior_state, explore=False): merge_action_list = [] for actor_l in self.actor_pool: actions_l_mean, actions_l_std = actor_l.get_action_mean_std( belief, posterior_state) merge_action_list.append(actions_l_mean) merge_action_list.append(actions_l_std) merge_actions = torch.cat(merge_action_list, dim=1) action = self.merge_actor_model.get_merge_action(merge_actions, belief, posterior_state, det=not (explore)) return action def train_algorithm(self, actor_states, actor_beliefs): [ self.actor_pipes[i][0].send(1) for i, w in enumerate(self.workers_actor) ] # Parent_pipe send data using i'th pipes [self.actor_pipes[i][0].recv() for i, _ in enumerate(self.actor_pool) ] # waitting the children finish with FreezeParameters(self.model_modules): imagination_traj = self.imagine_merge_ahead( prev_state=actor_states, prev_belief=actor_beliefs, policy_pool=self.actor_pool, transition_model=self.transition_model, merge_model=self.merge_actor_model) imged_beliefs, imged_prior_states, imged_prior_means, imged_prior_std_devs = imagination_traj with FreezeParameters(self.model_modules + self.merge_value_model_modules): imged_reward = bottle(self.reward_model, (imged_beliefs, imged_prior_states)) value_pred = bottle(self.merge_value_model, (imged_beliefs, imged_prior_states)) with FreezeParameters(self.actor_pool_modules): returns = lambda_return(imged_reward, value_pred, bootstrap=value_pred[-1], discount=args.discount, lambda_=args.disclam) merge_actor_loss = -torch.mean(returns) # Update model parameters self.merge_actor_optimizer.zero_grad() merge_actor_loss.backward() nn.utils.clip_grad_norm_(self.merge_actor_model.parameters(), args.grad_clip_norm, norm_type=2) self.merge_actor_optimizer.step() # Dreamer implementation: value loss calculation and optimization with torch.no_grad(): value_beliefs = imged_beliefs.detach() value_prior_states = imged_prior_states.detach() target_return = returns.detach() value_dist = Normal( bottle(self.merge_value_model, (value_beliefs, value_prior_states)), 1) # detach the input tensor from the transition network. merge_value_loss = -value_dist.log_prob(target_return).mean(dim=(0, 1)) # Update model parameters self.merge_value_optimizer.zero_grad() merge_value_loss.backward() nn.utils.clip_grad_norm_(self.merge_value_model.parameters(), args.grad_clip_norm, norm_type=2) self.merge_value_optimizer.step() self.merge_losses.append( [merge_actor_loss.item(), merge_value_loss.item()]) # return [merge_actor_loss, merge_value_loss] def save_loss_data(self, metrics_episodes): losses = tuple(zip(*self.merge_losses)) self.metrics['merge_actor_loss'].append(losses[0]) self.metrics['merge_value_loss'].append(losses[1]) Save_Txt(metrics_episodes[-1], self.metrics['merge_actor_loss'][-1], 'merge_actor_loss', args.results_dir) Save_Txt(metrics_episodes[-1], self.metrics['merge_value_loss'][-1], 'merge_value_loss', args.results_dir) [ sub_actor.save_loss_data(metrics_episodes) for sub_actor in self.workers_actor ] # save sub actor loss self.merge_losses = [] def imagine_merge_ahead(self, prev_state, prev_belief, policy_pool, transition_model, merge_model, planning_horizon=12): flatten = lambda x: x.view([-1] + list(x.size()[2:])) prev_belief = flatten(prev_belief) prev_state = flatten(prev_state) # Create lists for hidden states (cannot use single tensor as buffer because autograd won't work with inplace writes) T = planning_horizon beliefs, prior_states, prior_means, prior_std_devs = [ torch.empty(0) ] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T beliefs[0], prior_states[0] = prev_belief, prev_state for t in range(T - 1): _state = prior_states[t] merge_action_list = [] for actor_l in policy_pool: actions_l_mean, actions_l_std = actor_l.get_action_mean_std( beliefs[t].detach(), _state.detach()) merge_action_list.append(actions_l_mean) merge_action_list.append(actions_l_std) merge_actions = torch.cat(merge_action_list, dim=1) actions = merge_model.get_merge_action(merge_actions, beliefs[t].detach(), _state.detach()) # Compute belief (deterministic hidden state) if args.MultiGPU and torch.cuda.device_count() > 1: hidden = transition_model.module.act_fn( transition_model.module.fc_embed_state_action( torch.cat([_state, actions], dim=1))) beliefs[t + 1] = transition_model.module.rnn( hidden, beliefs[t]) # Compute state prior by applying transition dynamics hidden = transition_model.module.act_fn( transition_model.module.fc_embed_belief_prior(beliefs[t + 1])) prior_means[t + 1], _prior_std_dev = torch.chunk( transition_model.module.fc_state_prior(hidden), 2, dim=1) prior_std_devs[t + 1] = F.softplus( _prior_std_dev) + transition_model.module.min_std_dev else: hidden = transition_model.act_fn( transition_model.fc_embed_state_action( torch.cat([_state, actions], dim=1))) beliefs[t + 1] = transition_model.rnn(hidden, beliefs[t]) # Compute state prior by applying transition dynamics hidden = transition_model.act_fn( transition_model.fc_embed_belief_prior(beliefs[t + 1])) prior_means[t + 1], _prior_std_dev = torch.chunk( transition_model.fc_state_prior(hidden), 2, dim=1) prior_std_devs[t + 1] = F.softplus( _prior_std_dev) + transition_model.min_std_dev prior_states[t + 1] = prior_means[t + 1] + prior_std_devs[ t + 1] * torch.randn_like(prior_means[t + 1]) # Return new hidden states # imagined_traj = [beliefs, prior_states, prior_means, prior_std_devs] imagined_traj = [ torch.stack(beliefs[1:], dim=0), torch.stack(prior_states[1:], dim=0), torch.stack(prior_means[1:], dim=0), torch.stack(prior_std_devs[1:], dim=0) ] return imagined_traj def train_to_eval(self): [actor_model.eval() for actor_model in self.actor_pool] [value_model.eval() for value_model in self.value_pool] self.merge_actor_model.eval() self.merge_value_model.eval() def eval_to_train(self): [actor_model.train() for actor_model in self.actor_pool] [value_model.train() for value_model in self.value_pool] self.merge_actor_model.train() self.merge_value_model.train()
class Dreamer(): def __init__(self, args): """ All paras are passed by args :param args: a dict that includes parameters """ super().__init__() self.args = args # Initialise model parameters randomly self.transition_model = TransitionModel( args.belief_size, args.state_size, args.action_size, args.hidden_size, args.embedding_size, args.dense_act).to(device=args.device) self.observation_model = ObservationModel( args.symbolic, args.observation_size, args.belief_size, args.state_size, args.embedding_size, activation_function=(args.dense_act if args.symbolic else args.cnn_act)).to(device=args.device) self.reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.encoder = Encoder(args.symbolic, args.observation_size, args.embedding_size, args.cnn_act).to(device=args.device) self.actor_model = ActorModel( args.action_size, args.belief_size, args.state_size, args.hidden_size, activation_function=args.dense_act).to(device=args.device) self.value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.pcont_model = PCONTModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.target_value_model = deepcopy(self.value_model) for p in self.target_value_model.parameters(): p.requires_grad = False # setup the paras to update self.world_param = list(self.transition_model.parameters())\ + list(self.observation_model.parameters())\ + list(self.reward_model.parameters())\ + list(self.encoder.parameters()) if args.pcont: self.world_param += list(self.pcont_model.parameters()) # setup optimizer self.world_optimizer = optim.Adam(self.world_param, lr=args.world_lr) self.actor_optimizer = optim.Adam(self.actor_model.parameters(), lr=args.actor_lr) self.value_optimizer = optim.Adam(list(self.value_model.parameters()), lr=args.value_lr) # setup the free_nat self.free_nats = torch.full( (1, ), args.free_nats, dtype=torch.float32, device=args.device) # Allowed deviation in KL divergence def process_im(self, image): # Resize, put channel first, convert it to a tensor, centre it to [-0.5, 0.5] and add batch dimenstion. def preprocess_observation_(observation, bit_depth): # Preprocesses an observation inplace (from float32 Tensor [0, 255] to [-0.5, 0.5]) observation.div_(2**(8 - bit_depth)).floor_().div_( 2**bit_depth).sub_( 0.5) # Quantise to given bit depth and centre observation.add_( torch.rand_like(observation).div_(2**bit_depth) ) # Dequantise (to approx. match likelihood of PDF of continuous images vs. PMF of discrete images) image = torch.tensor( cv2.resize(image, (64, 64), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1), dtype=torch.float32) # Resize and put channel first preprocess_observation_(image, self.args.bit_depth) return image.unsqueeze(dim=0) def _compute_loss_world(self, state, data): # unpackage data beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = state observations, rewards, nonterminals = data observation_loss = F.mse_loss( bottle(self.observation_model, (beliefs, posterior_states)), observations, reduction='none').sum( dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1)) reward_loss = F.mse_loss(bottle(self.reward_model, (beliefs, posterior_states)), rewards, reduction='none').mean(dim=(0, 1)) # TODO: 5 # transition loss kl_loss = torch.max( kl_divergence( Independent(Normal(posterior_means, posterior_std_devs), 1), Independent(Normal(prior_means, prior_std_devs), 1)), self.free_nats).mean(dim=(0, 1)) if self.args.pcont: pcont_loss = F.binary_cross_entropy( bottle(self.pcont_model, (beliefs, posterior_states)), nonterminals) return observation_loss, self.args.reward_scale * reward_loss, kl_loss, ( self.args.pcont_scale * pcont_loss if self.args.pcont else 0) def _compute_loss_actor(self, imag_beliefs, imag_states, imag_ac_logps=None): # reward and value prediction of imagined trajectories imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) imag_values = bottle(self.value_model, (imag_beliefs, imag_states)) with torch.no_grad(): if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) pcont = pcont.detach() if imag_ac_logps is not None: imag_values[ 1:] -= self.args.temp * imag_ac_logps # add entropy here returns = cal_returns(imag_rewards[:-1], imag_values[:-1], imag_values[-1], pcont[:-1], lambda_=self.args.disclam) discount = torch.cumprod( torch.cat([torch.ones_like(pcont[:1]), pcont[:-2]], 0), 0).detach() actor_loss = -torch.mean(discount * returns) return actor_loss def _compute_loss_critic(self, imag_beliefs, imag_states, imag_ac_logps=None): with torch.no_grad(): # calculate the target with the target nn target_imag_values = bottle(self.target_value_model, (imag_beliefs, imag_states)) imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) if imag_ac_logps is not None: target_imag_values[1:] -= self.args.temp * imag_ac_logps returns = cal_returns(imag_rewards[:-1], target_imag_values[:-1], target_imag_values[-1], pcont[:-1], lambda_=self.args.disclam) target_return = returns.detach() value_pred = bottle(self.value_model, (imag_beliefs, imag_states))[:-1] value_loss = F.mse_loss(value_pred, target_return, reduction="none").mean(dim=(0, 1)) return value_loss def _latent_imagination(self, beliefs, posterior_states, with_logprob=False): # Rollout to generate imagined trajectories chunk_size, batch_size, _ = list( posterior_states.size()) # flatten the tensor flatten_size = chunk_size * batch_size posterior_states = posterior_states.detach().reshape(flatten_size, -1) beliefs = beliefs.detach().reshape(flatten_size, -1) imag_beliefs, imag_states, imag_ac_logps = [beliefs ], [posterior_states], [] for i in range(self.args.planning_horizon): imag_action, imag_ac_logp = self.actor_model( imag_beliefs[-1].detach(), imag_states[-1].detach(), deterministic=False, with_logprob=with_logprob, ) imag_action = imag_action.unsqueeze(dim=0) # add time dim imag_belief, imag_state, _, _ = self.transition_model( imag_states[-1], imag_action, imag_beliefs[-1]) imag_beliefs.append(imag_belief.squeeze(dim=0)) imag_states.append(imag_state.squeeze(dim=0)) if with_logprob: imag_ac_logps.append(imag_ac_logp.squeeze(dim=0)) imag_beliefs = torch.stack(imag_beliefs, dim=0).to( self.args.device ) # shape [horizon+1, (chuck-1)*batch, belief_size] imag_states = torch.stack(imag_states, dim=0).to(self.args.device) if with_logprob: imag_ac_logps = torch.stack(imag_ac_logps, dim=0).to( self.args.device) # shape [horizon, (chuck-1)*batch] return imag_beliefs, imag_states, imag_ac_logps if with_logprob else None def update_parameters(self, data, gradient_steps): loss_info = [] # used to record loss for s in tqdm(range(gradient_steps)): # get state and belief of samples observations, actions, rewards, nonterminals = data init_belief = torch.zeros(self.args.batch_size, self.args.belief_size, device=self.args.device) init_state = torch.zeros(self.args.batch_size, self.args.state_size, device=self.args.device) # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once) beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model( init_state, actions, init_belief, bottle(self.encoder, (observations, )), nonterminals) # TODO: 4 # update paras of world model world_model_loss = self._compute_loss_world( state=(beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs), data=(observations, rewards, nonterminals)) observation_loss, reward_loss, kl_loss, pcont_loss = world_model_loss self.world_optimizer.zero_grad() (observation_loss + reward_loss + kl_loss + pcont_loss).backward() nn.utils.clip_grad_norm_(self.world_param, self.args.grad_clip_norm, norm_type=2) self.world_optimizer.step() # freeze params to save memory for p in self.world_param: p.requires_grad = False for p in self.value_model.parameters(): p.requires_grad = False # latent imagination imag_beliefs, imag_states, imag_ac_logps = self._latent_imagination( beliefs, posterior_states, with_logprob=self.args.with_logprob) # update actor actor_loss = self._compute_loss_actor(imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm, norm_type=2) self.actor_optimizer.step() for p in self.world_param: p.requires_grad = True for p in self.value_model.parameters(): p.requires_grad = True # update critic imag_beliefs = imag_beliefs.detach() imag_states = imag_states.detach() critic_loss = self._compute_loss_critic( imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.value_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm, norm_type=2) self.value_optimizer.step() loss_info.append([ observation_loss.item(), reward_loss.item(), kl_loss.item(), pcont_loss.item() if self.args.pcont else 0, actor_loss.item(), critic_loss.item() ]) # finally, update target value function every #gradient_steps with torch.no_grad(): self.target_value_model.load_state_dict( self.value_model.state_dict()) return loss_info def infer_state(self, observation, action, belief=None, state=None): """ Infer belief over current state q(s_t|o≤t,a<t) from the history, return updated belief and posterior_state at time t returned shape: belief/state [belief/state_dim] (remove the time_dim) """ # observation is obs.to(device), action.shape=[act_dim] (will add time dim inside this fn), belief.shape belief, _, _, _, posterior_state, _, _ = self.transition_model( state, action.unsqueeze(dim=0), belief, self.encoder(observation).unsqueeze( dim=0)) # Action and observation need extra time dimension belief, posterior_state = belief.squeeze( dim=0), posterior_state.squeeze( dim=0) # Remove time dimension from belief/state return belief, posterior_state def select_action(self, state, deterministic=False): # get action with the inputs get from fn: infer_state; return a numpy with shape [batch, act_size] belief, posterior_state = state action, _ = self.actor_model(belief, posterior_state, deterministic=deterministic, with_logprob=False) if not deterministic and not self.args.with_logprob: ## add exploration noise action = Normal(action, self.args.expl_amount).rsample() action = torch.clamp(action, -1, 1) return action # tensor
# Param List param_list = list(transition_model.parameters()) + list( observation_model.parameters()) + list(reward_model.parameters()) + list( encoder.parameters()) if args.pcont: param_list += list(pcont_model.parameters()) model_optimizer = optim.Adam( param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon) actor_optimizer = optim.Adam( actor_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate, eps=args.adam_epsilon) value_optimizer = optim.Adam( value_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate, eps=args.adam_epsilon) if args.models != '' and os.path.exists(args.models): model_dicts = torch.load(args.models) transition_model.load_state_dict(model_dicts['transition_model']) observation_model.load_state_dict(model_dicts['observation_model']) reward_model.load_state_dict(model_dicts['reward_model']) if args.pcont: pcont_model.load_state_dict(model_dicts['pcont_model']) encoder.load_state_dict(model_dicts['encoder']) actor_model.load_state_dict(model_dicts['actor_model']) value_model.load_state_dict(model_dicts['value_model']) model_optimizer.load_state_dict(model_dicts['model_optimizer']) actor_optimizer.load_state_dict(model_dicts['actor_optimizer']) value_optimizer.load_state_dict(model_dicts['value_optimizer'])
args.dense_activation_function, doubleQ=False).to(device) # Param List param_list = list(transition_model.parameters()) + list( observation_model.parameters()) + list(reward_model.parameters()) + list( encoder.parameters()) if args.pcont: param_list += list(pcont_model.parameters()) # Optimizer model_optimizer = optim.Adam( param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon) actor_optimizer = optim.Adam( actor_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate, eps=args.adam_epsilon) value_optimizer = optim.Adam( value_model.parameters(), lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate, eps=args.adam_epsilon) # Load Model if args.models != '' and os.path.exists(args.models): model_dicts = torch.load(args.models) transition_model.load_state_dict(model_dicts['transition_model']) observation_model.load_state_dict(model_dicts['observation_model']) reward_model.load_state_dict(model_dicts['reward_model']) if args.pcont: pcont_model.load_state_dict(model_dicts['pcont_model']) encoder.load_state_dict(model_dicts['encoder']) actor_model.load_state_dict(model_dicts['actor_model']) value_model.load_state_dict(model_dicts['value_model']) model_optimizer.load_state_dict(model_dicts['model_optimizer']) actor_optimizer.load_state_dict(model_dicts['actor_optimizer']) value_optimizer.load_state_dict(model_dicts['value_optimizer'])
class Dreamer(Agent): # The agent has its own replay buffer, update, act def __init__(self, args): """ All paras are passed by args :param args: a dict that includes parameters """ super().__init__() self.args = args # Initialise model parameters randomly self.transition_model = TransitionModel( args.belief_size, args.state_size, args.action_size, args.hidden_size, args.embedding_size, args.dense_act).to(device=args.device) self.observation_model = ObservationModel( args.symbolic, args.observation_size, args.belief_size, args.state_size, args.embedding_size, activation_function=(args.dense_act if args.symbolic else args.cnn_act)).to(device=args.device) self.reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.encoder = Encoder(args.symbolic, args.observation_size, args.embedding_size, args.cnn_act).to(device=args.device) self.actor_model = ActorModel( args.action_size, args.belief_size, args.state_size, args.hidden_size, activation_function=args.dense_act, fix_speed=args.fix_speed, throttle_base=args.throttle_base).to(device=args.device) self.value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.value_model2 = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.pcont_model = PCONTModel(args.belief_size, args.state_size, args.hidden_size, args.dense_act).to(device=args.device) self.target_value_model = deepcopy(self.value_model) self.target_value_model2 = deepcopy(self.value_model2) for p in self.target_value_model.parameters(): p.requires_grad = False for p in self.target_value_model2.parameters(): p.requires_grad = False # setup the paras to update self.world_param = list(self.transition_model.parameters())\ + list(self.observation_model.parameters())\ + list(self.reward_model.parameters())\ + list(self.encoder.parameters()) if args.pcont: self.world_param += list(self.pcont_model.parameters()) # setup optimizer self.world_optimizer = optim.Adam(self.world_param, lr=args.world_lr) self.actor_optimizer = optim.Adam(self.actor_model.parameters(), lr=args.actor_lr) self.value_optimizer = optim.Adam(list(self.value_model.parameters()) + list(self.value_model2.parameters()), lr=args.value_lr) # setup the free_nat to self.free_nats = torch.full( (1, ), args.free_nats, dtype=torch.float32, device=args.device) # Allowed deviation in KL divergence # TODO: change it to the new replay buffer, in buffer.py self.D = ExperienceReplay(args.experience_size, args.symbolic, args.observation_size, args.action_size, args.bit_depth, args.device) if self.args.auto_temp: # setup for learning of alpha term (temp of the entropy term) self.log_temp = torch.zeros(1, requires_grad=True, device=args.device) self.target_entropy = -np.prod( args.action_size if not args.fix_speed else self.args. action_size - 1).item() # heuristic value from SAC paper self.temp_optimizer = optim.Adam( [self.log_temp], lr=args.value_lr) # use the same value_lr # TODO: print out the param used in Dreamer # var_counts = tuple(count_vars(module) for module in [self., self.ac.q1, self.ac.q2]) # print('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' % var_counts) # def process_im(self, image, image_size=None, rgb=None): # # Resize, put channel first, convert it to a tensor, centre it to [-0.5, 0.5] and add batch dimenstion. # # def preprocess_observation_(observation, bit_depth): # # Preprocesses an observation inplace (from float32 Tensor [0, 255] to [-0.5, 0.5]) # observation.div_(2 ** (8 - bit_depth)).floor_().div_(2 ** bit_depth).sub_( # 0.5) # Quantise to given bit depth and centre # observation.add_(torch.rand_like(observation).div_( # 2 ** bit_depth)) # Dequantise (to approx. match likelihood of PDF of continuous images vs. PMF of discrete images) # # image = image[40:, :, :] # clip the above 40 rows # image = torch.tensor(cv2.resize(image, (40, 40), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1), # dtype=torch.float32) # Resize and put channel first # # preprocess_observation_(image, self.args.bit_depth) # return image.unsqueeze(dim=0) def process_im(self, images, image_size=None, rgb=None): images = cv2.resize(images, (40, 40)) images = np.dot(images, [0.299, 0.587, 0.114]) obs = torch.tensor(images, dtype=torch.float32).div_(255.).sub_(0.5).unsqueeze( dim=0) # shape [1, 40, 40], range:[-0.5,0.5] return obs.unsqueeze(dim=0) # add batch dimension def append_buffer(self, new_traj): # append new collected trajectory, not implement the data augmentation # shape of new_traj: [(o, a, r, d) * steps] for state in new_traj: observation, action, reward, done = state self.D.append(observation, action.cpu(), reward, done) def _compute_loss_world(self, state, data): # unpackage data beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = state observations, rewards, nonterminals = data # observation_loss = F.mse_loss( # bottle(self.observation_model, (beliefs, posterior_states)), # observations[1:], # reduction='none').sum(dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1)) # # reward_loss = F.mse_loss( # bottle(self.reward_model, (beliefs, posterior_states)), # rewards[1:], # reduction='none').mean(dim=(0,1)) observation_loss = F.mse_loss( bottle(self.observation_model, (beliefs, posterior_states)), observations, reduction='none').sum( dim=2 if self.args.symbolic else (2, 3, 4)).mean(dim=(0, 1)) reward_loss = F.mse_loss(bottle(self.reward_model, (beliefs, posterior_states)), rewards, reduction='none').mean(dim=(0, 1)) # TODO: 5 # transition loss kl_loss = torch.max( kl_divergence( Independent(Normal(posterior_means, posterior_std_devs), 1), Independent(Normal(prior_means, prior_std_devs), 1)), self.free_nats).mean(dim=(0, 1)) # print("check the reward", bottle(pcont_model, (beliefs, posterior_states)).shape, nonterminals[:-1].shape) if self.args.pcont: pcont_loss = F.binary_cross_entropy( bottle(self.pcont_model, (beliefs, posterior_states)), nonterminals) # pcont_pred = torch.distributions.Bernoulli(logits=bottle(self.pcont_model, (beliefs, posterior_states))) # pcont_loss = -pcont_pred.log_prob(nonterminals[1:]).mean(dim=(0, 1)) return observation_loss, self.args.reward_scale * reward_loss, kl_loss, ( self.args.pcont_scale * pcont_loss if self.args.pcont else 0) def _compute_loss_actor(self, imag_beliefs, imag_states, imag_ac_logps=None): # reward and value prediction of imagined trajectories imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) imag_values = bottle(self.value_model, (imag_beliefs, imag_states)) imag_values2 = bottle(self.value_model2, (imag_beliefs, imag_states)) imag_values = torch.min(imag_values, imag_values2) with torch.no_grad(): if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) pcont = pcont.detach() if imag_ac_logps is not None: imag_values[ 1:] -= self.args.temp * imag_ac_logps # add entropy here returns = cal_returns(imag_rewards[:-1], imag_values[:-1], imag_values[-1], pcont[:-1], lambda_=self.args.disclam) discount = torch.cumprod( torch.cat([torch.ones_like(pcont[:1]), pcont[:-2]], 0), 0) discount = discount.detach() assert list(discount.size()) == list(returns.size()) actor_loss = -torch.mean(discount * returns) return actor_loss def _compute_loss_critic(self, imag_beliefs, imag_states, imag_ac_logps=None): with torch.no_grad(): # calculate the target with the target nn target_imag_values = bottle(self.target_value_model, (imag_beliefs, imag_states)) target_imag_values2 = bottle(self.target_value_model2, (imag_beliefs, imag_states)) target_imag_values = torch.min(target_imag_values, target_imag_values2) imag_rewards = bottle(self.reward_model, (imag_beliefs, imag_states)) if self.args.pcont: pcont = bottle(self.pcont_model, (imag_beliefs, imag_states)) else: pcont = self.args.discount * torch.ones_like(imag_rewards) # print("check pcont", pcont) if imag_ac_logps is not None: target_imag_values[1:] -= self.args.temp * imag_ac_logps returns = cal_returns(imag_rewards[:-1], target_imag_values[:-1], target_imag_values[-1], pcont[:-1], lambda_=self.args.disclam) target_return = returns.detach() value_pred = bottle(self.value_model, (imag_beliefs, imag_states))[:-1] value_pred2 = bottle(self.value_model2, (imag_beliefs, imag_states))[:-1] value_loss = F.mse_loss(value_pred, target_return, reduction="none").mean(dim=(0, 1)) value_loss2 = F.mse_loss(value_pred2, target_return, reduction="none").mean(dim=(0, 1)) value_loss += value_loss2 return value_loss def _latent_imagination(self, beliefs, posterior_states, with_logprob=False): # Rollout to generate imagined trajectories chunk_size, batch_size, _ = list( posterior_states.size()) # flatten the tensor flatten_size = chunk_size * batch_size posterior_states = posterior_states.detach().reshape(flatten_size, -1) beliefs = beliefs.detach().reshape(flatten_size, -1) imag_beliefs, imag_states, imag_ac_logps = [beliefs ], [posterior_states], [] for i in range(self.args.planning_horizon): imag_action, imag_ac_logp = self.actor_model( imag_beliefs[-1].detach(), imag_states[-1].detach(), deterministic=False, with_logprob=with_logprob, ) imag_action = imag_action.unsqueeze(dim=0) # add time dim # print(imag_states[-1].shape, imag_action.shape, imag_beliefs[-1].shape) imag_belief, imag_state, _, _ = self.transition_model( imag_states[-1], imag_action, imag_beliefs[-1]) imag_beliefs.append(imag_belief.squeeze(dim=0)) imag_states.append(imag_state.squeeze(dim=0)) if with_logprob: imag_ac_logps.append(imag_ac_logp.squeeze(dim=0)) imag_beliefs = torch.stack(imag_beliefs, dim=0).to( self.args.device ) # shape [horizon+1, (chuck-1)*batch, belief_size] imag_states = torch.stack(imag_states, dim=0).to(self.args.device) if with_logprob: imag_ac_logps = torch.stack(imag_ac_logps, dim=0).to( self.args.device) # shape [horizon, (chuck-1)*batch] return imag_beliefs, imag_states, imag_ac_logps if with_logprob else None def update_parameters(self, gradient_steps): loss_info = [] # used to record loss for s in tqdm(range(gradient_steps)): # get state and belief of samples observations, actions, rewards, nonterminals = self.D.sample( self.args.batch_size, self.args.chunk_size) # print("check sampled rewrads", rewards) init_belief = torch.zeros(self.args.batch_size, self.args.belief_size, device=self.args.device) init_state = torch.zeros(self.args.batch_size, self.args.state_size, device=self.args.device) # Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once) # beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model( # init_state, # actions[:-1], # init_belief, # bottle(self.encoder, (observations[1:], )), # nonterminals[:-1]) beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = self.transition_model( init_state, actions, init_belief, bottle(self.encoder, (observations, )), nonterminals) # TODO: 4 # update paras of world model world_model_loss = self._compute_loss_world( state=(beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs), data=(observations, rewards, nonterminals)) observation_loss, reward_loss, kl_loss, pcont_loss = world_model_loss self.world_optimizer.zero_grad() (observation_loss + reward_loss + kl_loss + pcont_loss).backward() nn.utils.clip_grad_norm_(self.world_param, self.args.grad_clip_norm, norm_type=2) self.world_optimizer.step() # freeze params to save memory for p in self.world_param: p.requires_grad = False for p in self.value_model.parameters(): p.requires_grad = False for p in self.value_model2.parameters(): p.requires_gard = False # latent imagination imag_beliefs, imag_states, imag_ac_logps = self._latent_imagination( beliefs, posterior_states, with_logprob=self.args.with_logprob) # update temp if self.args.auto_temp: temp_loss = -( self.log_temp * (imag_ac_logps[0] + self.target_entropy).detach()).mean() self.temp_optimizer.zero_grad() temp_loss.backward() self.temp_optimizer.step() self.args.temp = self.log_temp.exp() # update actor actor_loss = self._compute_loss_actor(imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.actor_optimizer.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor_model.parameters(), self.args.grad_clip_norm, norm_type=2) self.actor_optimizer.step() for p in self.world_param: p.requires_grad = True for p in self.value_model.parameters(): p.requires_grad = True for p in self.value_model2.parameters(): p.requires_grad = True # update critic imag_beliefs = imag_beliefs.detach() imag_states = imag_states.detach() critic_loss = self._compute_loss_critic( imag_beliefs, imag_states, imag_ac_logps=imag_ac_logps) self.value_optimizer.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.value_model.parameters(), self.args.grad_clip_norm, norm_type=2) nn.utils.clip_grad_norm_(self.value_model2.parameters(), self.args.grad_clip_norm, norm_type=2) self.value_optimizer.step() loss_info.append([ observation_loss.item(), reward_loss.item(), kl_loss.item(), pcont_loss.item() if self.args.pcont else 0, actor_loss.item(), critic_loss.item() ]) # finally, update target value function every #gradient_steps with torch.no_grad(): self.target_value_model.load_state_dict( self.value_model.state_dict()) with torch.no_grad(): self.target_value_model2.load_state_dict( self.value_model2.state_dict()) return loss_info def infer_state(self, observation, action, belief=None, state=None): """ Infer belief over current state q(s_t|o≤t,a<t) from the history, return updated belief and posterior_state at time t returned shape: belief/state [belief/state_dim] (remove the time_dim) """ # observation is obs.to(device), action.shape=[act_dim] (will add time dim inside this fn), belief.shape belief, _, _, _, posterior_state, _, _ = self.transition_model( state, action.unsqueeze(dim=0), belief, self.encoder(observation).unsqueeze( dim=0)) # Action and observation need extra time dimension belief, posterior_state = belief.squeeze( dim=0), posterior_state.squeeze( dim=0) # Remove time dimension from belief/state return belief, posterior_state def select_action(self, state, deterministic=False): # get action with the inputs get from fn: infer_state; return a numpy with shape [batch, act_size] belief, posterior_state = state action, _ = self.actor_model(belief, posterior_state, deterministic=deterministic, with_logprob=False) if not deterministic and not self.args.with_logprob: print("e") action = Normal(action, self.args.expl_amount).rsample() # clip the angle action[:, 0].clamp_(min=self.args.angle_min, max=self.args.angle_max) # clip the throttle if self.args.fix_speed: action[:, 1] = self.args.throttle_base else: action[:, 1].clamp_(min=self.args.throttle_min, max=self.args.throttle_max) print("action", action) # return action.cup().numpy() return action # this is a Tonsor.cuda def import_parameters(self, params): # only import or export the parameters used when local rollout self.encoder.load_state_dict(params["encoder"]) self.actor_model.load_state_dict(params["policy"]) self.transition_model.load_state_dict(params["transition"]) def export_parameters(self): """ return the model paras used for local rollout """ params = { "encoder": self.encoder.cpu().state_dict(), "policy": self.actor_model.cpu().state_dict(), "transition": self.transition_model.cpu().state_dict() } self.encoder.to(self.args.device) self.actor_model.to(self.args.device) self.transition_model.to(self.args.device) return params
p.requires_grad = False # setup for learning of alpha term (temp of the entropy term) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) target_entropy = -np.prod( env.action_size).item() # heuristic value from SAC paper world_param = list(transition_model.parameters()) + list( observation_model.parameters()) + list(reward_model.parameters()) + list( encoder.parameters()) if args.pcont: world_param += list(pcont_model.parameters()) world_optimizer = optim.Adam(world_param, lr=args.world_lr) actor_optimizer = optim.Adam(actor_model.parameters(), lr=args.actor_lr) value_optimizer = optim.Adam(list(value_model1.parameters()) + list(value_model2.parameters()), lr=args.value_lr) alpha_optimizer = optim.Adam([log_alpha], lr=3e-3) if args.models is not '' and os.path.exists(args.models): model_dicts = torch.load(args.models) transition_model.load_state_dict(model_dicts['transition_model']) observation_model.load_state_dict(model_dicts['observation_model']) reward_model.load_state_dict(model_dicts['reward_model']) encoder.load_state_dict(model_dicts['encoder']) actor_model.load_state_dict(model_dicts['actor_model']) value_model1.load_state_dict(model_dicts['value_model1']) value_model2.load_state_dict(model_dicts['value_model2']) world_optimizer.load_state_dict(model_dicts['world_optimizer'])