import numpy as np import pyhdf.SD import matplotlib.pyplot as plt from dateutil.parser import parse from plot_rads import make_dir import dateutil.tz as tz import re import bitmap plot_dir='plots' make_dir(plot_dir) mask_file=glob.glob('MYD35*2010215*.hdf')[0] my_parser=metaParse(filename=mask_file) meta_data=my_parser.get_info() mask=pyhdf.SD.SD(mask_file) theDate=parse(meta_data['startdate'][:-3] + meta_data['starttime']) theDate=theDate.replace(tzinfo=tz.tzutc()) maskVals=mask.select('Cloud_Mask') maskVals=maskVals.get() maskVals=maskVals[0,...] #get the first byte # # pass the byte to bitmap and get back the cloudmask # and the landmask # maskout,landout=bitmap.getmask_zero(maskVals) oceanvals=(landout==0)
if __name__=="__main__": import copy from matplotlib.colors import Normalize from matplotlib import cm cmap=copy.deepcopy(cm.RdBu_r) cmap.set_over('y') cmap.set_under('w') vmin= 7.5 vmax= 8.5 the_norm=Normalize(vmin=vmin,vmax=vmax,clip=False) granule_info='A2010215.2145.005' model3_file='*D03*{0:s}*hdf'.format(granule_info) model3_file=glob.glob(model3_file)[0] my_parser=metaParse(filename=model3_file) meta_data=my_parser.get_info() sdgeom=pyhdf.SD.SD(model3_file) fullLats_raw=sdgeom.select('Latitude') fullLats_raw=fullLats_raw.get() fullLons_raw=sdgeom.select('Longitude') fullLons_raw=fullLons_raw.get() sdgeom.end() model2_file='*D021KM*{0:s}*hdf'.format(granule_info) model2_file=glob.glob(model2_file)[0] sdrad=pyhdf.SD.SD(model2_file) longWave=sdrad.select('EV_1KM_Emissive') allRadiances=longWave.get() model35_file='*D35*{0:s}*hdf'.format(granule_info) model35_file=glob.glob(model35_file)[0]